Suppr超能文献

利用反射兴奋改进肌肉力分布模型:迈向基于模型的外骨骼扭矩优化方法。

Improving Muscle Force Distribution Model Using Reflex Excitation: Toward a Model-Based Exoskeleton Torque Optimization Approach.

作者信息

Rayati Mojtaba, Nasiri Rezvan, Ahmadabadi Majid Nili

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:720-728. doi: 10.1109/TNSRE.2022.3230795. Epub 2023 Feb 2.

Abstract

UNLABELLED

In this study, we improve the existing model for force distribution over the muscles by considering reflex excitation as a nonvoluntary mechanism of our neuromuscular system. The improved model can explain the large difference between biological torque and experimentally optimized assistive torque profiles. Accordingly, we hypothesize that the "nonvoluntary nature of reflexive excitation highly restricts biological torque compensation". The proposed model can also potentially characterize co-activation behavior in antagonistic muscles. Using our improved model, we introduce a well-posed framework to optimize the exoskeleton torque profile by metabolic rate minimization.

METHODS

To support our hypothesis and the proposed method, we utilize two experimental datasets for exoskeleton torque optimization; passive and active ankle exoskeletons. First, we use the passive exoskeleton dataset to identify the parameters of our model; i.e., reflex gains. Then, to validate the proposed model, the identified parameters are used to optimize the exoskeleton torque profile for the second experimental study.

LIMITATIONS

It is assumed that joint kinematic and reflex gains are fixed with and without exoskeleton.

RESULTS

74% of biological torque at the ankle joint cannot be experimentally compensated and the existing models can only explain that 17% of the biological torque is uncompensable. Our improved model can explain that 58% of biological torque is uncompensable (but still 16% remains unexplained). This achievement provides support for our hypothesis and shows undeniable contribution of reflex excitation for exoskeleton torque profile optimization.

摘要

未标注

在本研究中,我们通过将反射性兴奋视为神经肌肉系统的一种非自主机制,改进了现有的肌肉力分布模型。改进后的模型可以解释生物扭矩与实验优化的辅助扭矩曲线之间的巨大差异。因此,我们假设“反射性兴奋的非自主性质极大地限制了生物扭矩补偿”。所提出的模型还可能表征拮抗肌中的共同激活行为。利用我们改进后的模型,我们引入了一个适定框架,通过代谢率最小化来优化外骨骼扭矩曲线。

方法

为了支持我们的假设和所提出的方法,我们利用两个实验数据集进行外骨骼扭矩优化;被动和主动踝关节外骨骼。首先,我们使用被动外骨骼数据集来识别我们模型的参数,即反射增益。然后,为了验证所提出的模型,将识别出的参数用于优化第二个实验研究的外骨骼扭矩曲线。

局限性

假设关节运动学和反射增益在有和没有外骨骼的情况下是固定的。

结果

踝关节处74%的生物扭矩无法通过实验进行补偿,而现有模型只能解释17%的生物扭矩无法补偿。我们改进后的模型可以解释58%的生物扭矩无法补偿(但仍有16%无法解释)。这一成果为我们的假设提供了支持,并表明反射性兴奋对外骨骼扭矩曲线优化具有不可否认的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验