Suppr超能文献

用于肩部、脊柱和膝关节动力外骨骼提升任务的人机耦合模拟

Human-Exoskeleton Coupling Simulation for Lifting Tasks with Shoulder, Spine, and Knee-Joint Powered Exoskeletons.

作者信息

Arefeen Asif, Xia Ting, Xiang Yujiang

机构信息

School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA.

Department of Mechanical Engineering, Northern Illinois University, DeKalb, IL 60115, USA.

出版信息

Biomimetics (Basel). 2024 Jul 25;9(8):454. doi: 10.3390/biomimetics9080454.

Abstract

In this study, we introduce a two-dimensional (2D) human skeletal model coupled with knee, spine, and shoulder exoskeletons. The primary purpose of this model is to predict the optimal lifting motion and provide torque support from the exoskeleton through the utilization of inverse dynamics optimization. The kinematics and dynamics of the human model are expressed using the Denavit-Hartenberg (DH) representation. The lifting optimization formulation integrates the electromechanical dynamics of the DC motors in the exoskeletons of the knee, spine, and shoulder. The design variables for this study include human joint angle profiles and exoskeleton motor current profiles. The optimization objective is to minimize the squared normalized human joint torques, subject to physical and task-specific lifting constraints. We solve this optimization problem using the gradient-based optimizer SNOPT. Our results include a comparison of predicted human joint angle profiles, joint torque profiles, and ground reaction force (GRF) profiles between lifting tasks with and without exoskeleton assistance. We also explore various combinations of exoskeletons for the knee, spine, and shoulder. By resolving the lifting optimization problems, we designed the optimal torques for the exoskeletons located at the knee, spine, and shoulder. It was found that the support from the exoskeletons substantially lowers the torque levels in human joints. Additionally, we conducted experiments only on the knee exoskeleton. Experimental data indicated that using the knee exoskeleton decreases the muscle activation peaks by 35.00%, 10.03%, 22.12%, 30.14%, 16.77%, and 25.71% for muscles of the erector spinae, latissimus dorsi, vastus medialis, vastus lateralis, rectus femoris, and biceps femoris, respectively.

摘要

在本研究中,我们引入了一个与膝盖、脊柱和肩部外骨骼相结合的二维人体骨骼模型。该模型的主要目的是预测最佳的举升动作,并通过逆动力学优化利用外骨骼提供扭矩支持。人体模型的运动学和动力学使用Denavit-Hartenberg(DH)表示法来表达。举升优化公式整合了膝盖、脊柱和肩部外骨骼中直流电机的机电动力学。本研究的设计变量包括人体关节角度曲线和外骨骼电机电流曲线。优化目标是在满足物理和特定任务的举升约束条件下,使归一化的人体关节扭矩平方最小化。我们使用基于梯度的优化器SNOPT来解决这个优化问题。我们的结果包括比较有无外骨骼辅助的举升任务之间预测的人体关节角度曲线、关节扭矩曲线和地面反作用力(GRF)曲线。我们还探索了膝盖、脊柱和肩部外骨骼的各种组合。通过解决举升优化问题,我们设计了位于膝盖、脊柱和肩部的外骨骼的最佳扭矩。结果发现,外骨骼的支持显著降低了人体关节中的扭矩水平。此外,我们仅对膝盖外骨骼进行了实验。实验数据表明,使用膝盖外骨骼分别使竖脊肌、背阔肌、股内侧肌、股外侧肌、股直肌和股二头肌的肌肉激活峰值降低了35.00%、10.03%、22.12%、30.14%、16.77%和25.71%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a2/11351418/4fc613a0bf07/biomimetics-09-00454-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验