Suppr超能文献

用于概念漂移的微型机器学习

Tiny Machine Learning for Concept Drift.

作者信息

Disabato Simone, Roveri Manuel

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):8470-8481. doi: 10.1109/TNNLS.2022.3229897. Epub 2024 Jun 3.

Abstract

Tiny machine learning (TML) is a new research area whose goal is to design machine and deep learning (DL) techniques able to operate in embedded systems and the Internet-of-Things (IoT) units, hence satisfying the severe technological constraints on memory, computation, and energy characterizing these pervasive devices. Interestingly, the related literature mainly focused on reducing the computational and memory demand of the inference phase of machine and deep learning models. At the same time, the training is typically assumed to be carried out in cloud or edge computing systems (due to the larger memory and computational requirements). This assumption results in TML solutions that might become obsolete when the process generating the data is affected by concept drift (e.g., due to periodicity or seasonality effect, faults or malfunctioning affecting sensors or actuators, or changes in the users' behavior), a common situation in real-world application scenarios. For the first time in the literature, this article introduces a TML for concept drift (TML-CD) solution based on deep learning feature extractors and a k -nearest neighbors ( k -NNs) classifier integrating a hybrid adaptation module able to deal with concept drift affecting the data-generating process. This adaptation module continuously updates (in a passive way) the knowledge base of TML-CD and, at the same time, employs a change detection test (CDT) to inspect for changes (in an active way) to quickly adapt to concept drift by removing obsolete knowledge. Experimental results on both image and audio benchmarks show the effectiveness of the proposed solution, whilst the porting of TML-CD on three off-the-shelf micro-controller units (MCUs) shows the feasibility of what is proposed in real-world pervasive systems.

摘要

微型机器学习(TML)是一个新的研究领域,其目标是设计能够在嵌入式系统和物联网(IoT)设备中运行的机器学习和深度学习(DL)技术,从而满足这些普及型设备在内存、计算和能源方面的严格技术限制。有趣的是,相关文献主要集中在降低机器学习和深度学习模型推理阶段的计算和内存需求。同时,通常假设训练是在云计算或边缘计算系统中进行的(由于内存和计算需求较大)。这种假设导致当生成数据的过程受到概念漂移影响时(例如,由于周期性或季节性效应、影响传感器或执行器的故障或故障,或用户行为的变化),TML解决方案可能会过时,这在实际应用场景中是很常见的情况。本文首次在文献中介绍了一种基于深度学习特征提取器和k近邻(k-NN)分类器的概念漂移TML(TML-CD)解决方案,该分类器集成了一个能够处理影响数据生成过程的概念漂移的混合自适应模块。这个自适应模块以被动方式持续更新TML-CD的知识库,同时采用变化检测测试(CDT)以主动方式检查变化,通过去除过时知识快速适应概念漂移。在图像和音频基准测试上的实验结果表明了所提出解决方案的有效性,而将TML-CD移植到三个现成的微控制器单元(MCU)上则表明了在实际普及型系统中所提出方案的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验