Chao Brian, Liu Chang-Le, Chen Homer H
IEEE Trans Image Process. 2023;32:350-363. doi: 10.1109/TIP.2022.3203210. Epub 2022 Dec 20.
Conventional stereoscopic displays suffer from vergence-accommodation conflict and cause visual fatigue. Integral-imaging-based displays resolve the problem by directly projecting the sub-aperture views of a light field into the eyes using a microlens array or a similar structure. However, such displays have an inherent trade-off between angular and spatial resolutions. In this paper, we propose a novel coded time-division multiplexing technique that projects encoded sub-aperture views to the eyes of a viewer with correct cues for vergence-accommodation reflex. Given sparse light field sub-aperture views, our pipeline can provide a perception of high-resolution refocused images with minimal aliasing by jointly optimizing the sub-aperture views for display and the coded aperture pattern. This is achieved via deep learning in an end-to-end fashion by simulating light transport and image formation with Fourier optics. To our knowledge, this work is among the first that optimize the light field display pipeline with deep learning. We verify our idea with objective image quality metrics (PSNR, SSIM, and LPIPS) and perform an extensive study on various customizable design variables in our display pipeline. Experimental results show that light fields displayed using the proposed technique indeed have higher quality than that of baseline display designs.
传统的立体显示器存在双眼视差与调节冲突的问题,并会导致视觉疲劳。基于积分成像的显示器通过使用微透镜阵列或类似结构将光场的子孔径视图直接投射到眼睛中来解决该问题。然而,这种显示器在角分辨率和空间分辨率之间存在固有的权衡。在本文中,我们提出了一种新颖的编码时分复用技术,该技术将编码后的子孔径视图投射到观看者的眼睛中,并带有用于双眼视差与调节反射的正确线索。给定稀疏的光场子孔径视图,我们的流程可以通过联合优化用于显示的子孔径视图和编码孔径图案,以最小的混叠提供高分辨率重聚焦图像的感知。这是通过深度学习以端到端的方式实现的,通过用傅里叶光学模拟光传输和图像形成。据我们所知,这项工作是最早用深度学习优化光场显示流程的工作之一。我们用客观图像质量指标(PSNR、SSIM和LPIPS)验证了我们的想法,并对我们显示流程中的各种可定制设计变量进行了广泛研究。实验结果表明,使用所提出技术显示的光场确实比基线显示设计具有更高的质量。