Suppr超能文献

用于智能故障诊断的可解释图小波去噪网络

Explainable Graph Wavelet Denoising Network for Intelligent Fault Diagnosis.

作者信息

Li Tianfu, Sun Chuang, Li Sinan, Wang Zhiying, Chen Xuefeng, Yan Ruqiang

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):8535-8548. doi: 10.1109/TNNLS.2022.3230458. Epub 2024 Jun 3.

Abstract

Deep learning (DL)-based intelligent fault diagnosis methods have greatly promoted the development of the field of fault diagnosis due to their powerful feature extraction ability for handling massive monitoring data. However, most of them still suffer from the following three limitations. First, many existing DL-based intelligent diagnosis methods cannot extract proper discriminative features from signals with strong noise. Second, the interactions or relationships between signals are ignored, while they mainly focus on extracting temporal features from the signal. Third, owing to their black-box nature, the learned features lack interpretability, which hinders their application in the industry. To tackle these issues, an explainable graph wavelet denoising network (GWDN) is proposed to achieve intelligent fault diagnosis under noisy working conditions in this article. In GWDN, the collected signals are first transformed into graph-structured data to consider the interactions among signals. Then, the graph wavelet denoising convolution (GWDConv) is proposed based on the discrete graph wavelet frame, which allows GWDN to achieve multiscale feature extraction for graph-structured data and realize signal denoising. Extensive experiments are implemented to verify the efficacy of the proposed GWDN, and the experimental results show that GWDN can achieve state-of-the-art performance among the comparison methods. Besides, by using the square envelope spectrum to analyze the extracted features of GWDConv, we find that it can well retain the fault-related components of the signal and realize signal denoising, which further proves that GWDN is explainable.

摘要

基于深度学习(DL)的智能故障诊断方法,因其在处理海量监测数据方面强大的特征提取能力,极大地推动了故障诊断领域的发展。然而,它们中的大多数仍存在以下三个局限性。首先,许多现有的基于DL的智能诊断方法无法从强噪声信号中提取合适的判别特征。其次,信号之间的相互作用或关系被忽略,它们主要专注于从信号中提取时间特征。第三,由于其黑箱性质,所学习的特征缺乏可解释性,这阻碍了它们在工业中的应用。为了解决这些问题,本文提出了一种可解释的图小波去噪网络(GWDN),以在噪声工作条件下实现智能故障诊断。在GWDN中,首先将收集到的信号转换为图结构数据,以考虑信号之间的相互作用。然后,基于离散图小波框架提出了图小波去噪卷积(GWDConv),这使得GWDN能够对图结构数据进行多尺度特征提取并实现信号去噪。进行了大量实验以验证所提出的GWDN的有效性,实验结果表明GWDN在比较方法中能够实现最优性能。此外,通过使用平方包络谱分析GWDConv提取的特征,我们发现它能够很好地保留信号中与故障相关的成分并实现信号去噪,这进一步证明了GWDN是可解释的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验