School of Physics, University of Hyderabad, Hyderabad, 500046, India.
Department of Physics, GITAM University, Hyderabad, India.
Sci Rep. 2023 Apr 4;13(1):5500. doi: 10.1038/s41598-023-32750-x.
The Rashba spin-orbit coupling induced quantum transport through a quantum dot embedded in a two-arm quantum loop of a quantum dot transistor is studied at finite temperature in the presence of electron-phonon and Hubbard interactions, an external magnetic field and quantum dissipation. The Anderson-Holstein-Caldeira-Leggett-Rashba model is used to describe the system and several unitary transformations are employed to decouple some of the interactions and the transport properties are calculated using the Keldysh technique. It is shown that the Rashba coupling alone separates the spin-up and spin-down currents causing zero-field spin-polarization. The gap between the up and down-spin currents and conductances can be changed by tuning the Rashba strength. In the absence of a field, the spin-up and spin-down currents show an opposite behaviour with respect to spin-orbit interaction phase. The spin-polarization increases with increasing electron-phonon interaction at zero magnetic field. In the presence of a magnetic field, the tunneling conductance and spin-polarization change differently with the polaronic interaction, spin-orbit interaction and dissipation in different temperature regimes. This study predicts that for a given Rashba strength and magnetic field, the maximum spin-polarization in a quantum dot based device occurs at zero temperature.
在有限温度下,研究了电子-声子和 Hubbard 相互作用、外加磁场和量子耗散存在时,嵌入量子点晶体管双臂量子环中的量子点中 Rashba 自旋轨道耦合诱导的量子输运。采用 Anderson-Holstein-Caldeira-Leggett-Rashba 模型来描述系统,并采用几个幺正变换来解耦一些相互作用,然后使用 Keldysh 技术计算输运性质。结果表明,仅 Rashba 耦合就可以分离自旋向上和自旋向下电流,导致零场自旋极化。通过调节 Rashba 强度可以改变上自旋和下自旋电流以及电导之间的间隙。在没有磁场的情况下,自旋向上和自旋向下电流对于自旋轨道相互作用相位表现出相反的行为。在零磁场下,自旋极化随电子-声子相互作用的增加而增加。在存在磁场的情况下,在不同温度区域,隧道电导和自旋极化随极化子相互作用、自旋轨道相互作用和耗散的变化方式不同。本研究预测,对于给定的 Rashba 强度和磁场,基于量子点的器件中的最大自旋极化出现在零温度下。