Suppr超能文献

有限温度下具有电子和极化子相互作用的耗散量子点晶体管中的 Rashba 效应的磁输运。

Rashba effect on finite temperature magnetotransport in a dissipative quantum dot transistor with electronic and polaronic interactions.

机构信息

School of Physics, University of Hyderabad, Hyderabad, 500046, India.

Department of Physics, GITAM University, Hyderabad, India.

出版信息

Sci Rep. 2023 Apr 4;13(1):5500. doi: 10.1038/s41598-023-32750-x.

Abstract

The Rashba spin-orbit coupling induced quantum transport through a quantum dot embedded in a two-arm quantum loop of a quantum dot transistor is studied at finite temperature in the presence of electron-phonon and Hubbard interactions, an external magnetic field and quantum dissipation. The Anderson-Holstein-Caldeira-Leggett-Rashba model is used to describe the system and several unitary transformations are employed to decouple some of the interactions and the transport properties are calculated using the Keldysh technique. It is shown that the Rashba coupling alone separates the spin-up and spin-down currents causing zero-field spin-polarization. The gap between the up and down-spin currents and conductances can be changed by tuning the Rashba strength. In the absence of a field, the spin-up and spin-down currents show an opposite behaviour with respect to spin-orbit interaction phase. The spin-polarization increases with increasing electron-phonon interaction at zero magnetic field. In the presence of a magnetic field, the tunneling conductance and spin-polarization change differently with the polaronic interaction, spin-orbit interaction and dissipation in different temperature regimes. This study predicts that for a given Rashba strength and magnetic field, the maximum spin-polarization in a quantum dot based device occurs at zero temperature.

摘要

在有限温度下,研究了电子-声子和 Hubbard 相互作用、外加磁场和量子耗散存在时,嵌入量子点晶体管双臂量子环中的量子点中 Rashba 自旋轨道耦合诱导的量子输运。采用 Anderson-Holstein-Caldeira-Leggett-Rashba 模型来描述系统,并采用几个幺正变换来解耦一些相互作用,然后使用 Keldysh 技术计算输运性质。结果表明,仅 Rashba 耦合就可以分离自旋向上和自旋向下电流,导致零场自旋极化。通过调节 Rashba 强度可以改变上自旋和下自旋电流以及电导之间的间隙。在没有磁场的情况下,自旋向上和自旋向下电流对于自旋轨道相互作用相位表现出相反的行为。在零磁场下,自旋极化随电子-声子相互作用的增加而增加。在存在磁场的情况下,在不同温度区域,隧道电导和自旋极化随极化子相互作用、自旋轨道相互作用和耗散的变化方式不同。本研究预测,对于给定的 Rashba 强度和磁场,基于量子点的器件中的最大自旋极化出现在零温度下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e95/10073154/4b4072c92ae3/41598_2023_32750_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验