Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, 65409, USA.
Department of Chemistry, University of Missouri, Columbia, Missouri, 65211, USA.
Chemphyschem. 2023 Jun 1;24(11):e202300053. doi: 10.1002/cphc.202300053. Epub 2023 Apr 4.
We have been interested in the development of rubisco-based biomimetic systems for reversible CO capture from air. Our design of the chemical CO capture and release (CCR) system is informed by the understanding of the binding of the activator CO ( CO ) in rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase). The active site consists of the tetrapeptide sequence Lys-Asp-Asp-Glu (or KDDE) and the Lys sidechain amine is responsible for the CO capture reaction. We are studying the structural chemistry and the thermodynamics of CO capture based on the tetrapeptide CH CO-KDDE-NH ("KDDE") in aqueous solution to develop rubisco mimetic CCR systems. Here, we report the results of H NMR and C NMR analyses of CO capture by butylamine and by KDDE. The carbamylation of butylamine was studied to develop the NMR method and with the protocol established, we were able to quantify the oligopeptide carbamylation at much lower concentration. We performed a pH profile in the multi equilibrium system and measured amine species and carbamic acid/carbamate species by the integration of H NMR signals as a function of pH in the range 8≤pH≤11. The determination of ΔG (R) for the reaction R-NH +CO R-NH-COOH requires the solution of a multi-equilibrium equation system, which accounts for the dissociation constants K and K controlling carbonate and bicarbonate concentrations, the acid dissociation constant K of the conjugated acid of the amine, and the acid dissociation constant K of the alkylcarbamic acid. We show how the multi-equilibrium equation system can be solved with the measurements of the daughter/parent ratio X, the knowledge of the pH values, and the initial concentrations [HCO ] and [R-NH ] . For the reaction energies of the carbamylations of butylamine and KDDE, our best values are ΔG (Bu)=-1.57 kcal/mol and ΔG (KDDE)=-1.17 kcal/mol. Both CO capture reactions are modestly exergonic and thereby ensure reversibility in an energy-efficient manner. These results validate the hypothesis that KDDE-type oligopeptides may serve as reversible CCR systems in aqueous solution and guide designs for their improvement.
我们一直对基于 Rubisco 的仿生系统的发展感兴趣,该系统可用于从空气中可逆地捕获 CO。我们设计的化学 CO 捕获和释放 (CCR) 系统的依据是对激活剂 CO (CO) 在 Rubisco(核酮糖-1,5-二磷酸羧化酶/加氧酶)中结合的理解。活性部位由四肽序列 Lys-Asp-Asp-Glu(或 KDDE)组成,Lys 侧链胺负责 CO 捕获反应。我们正在研究基于水溶液中四肽 CH CO-KDDE-NH(“KDDE”)的结构化学和 CO 捕获热力学,以开发 Rubisco 模拟 CCR 系统。在这里,我们报告了丁胺和 KDDE 捕获 CO 的 1 H NMR 和 13 C NMR 分析结果。研究了丁胺的氨甲酰化作用,以开发 NMR 方法,并根据建立的方案,我们能够在低得多的浓度下定量测定寡肽的氨甲酰化。我们在多平衡体系中进行了 pH 曲线测定,并通过在 pH 8≤pH≤11 范围内作为 pH 的函数积分 1 H NMR 信号来测量胺类物质和氨基甲酸/氨基甲酸盐类物质。确定反应 R-NH +CO →R-NH-COOH 的 ΔG(R)需要求解多平衡方程组,该方程组考虑了控制碳酸盐和碳酸氢盐浓度的离解常数 K 和 K,胺的共轭酸的酸离解常数 K 和烷基氨基甲酸的酸离解常数 K。我们展示了如何使用子/母比 X 的测量值、pH 值以及初始浓度[HCO 3-]和[R-NH 2]来求解多平衡方程组。对于丁胺和 KDDE 的氨甲酰化反应能,我们的值是ΔG(Bu)=-1.57 kcal/mol 和 ΔG(KDDE)=-1.17 kcal/mol。这两个 CO 捕获反应都是适度的放能反应,因此以节能的方式确保了可逆性。这些结果验证了 KDDE 型寡肽可能在水溶液中作为可逆 CCR 系统的假说,并指导其改进设计。