Suppr超能文献

虚拟肝活检预测肝切除术的结果。

A virtual biopsy of liver parenchyma to predict the outcome of liver resection.

机构信息

Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.

Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, Milan, Italy.

出版信息

Updates Surg. 2023 Sep;75(6):1519-1531. doi: 10.1007/s13304-023-01495-7. Epub 2023 Apr 5.

Abstract

The preoperative risk assessment of liver resections (LR) is still an open issue. Liver parenchyma characteristics influence the outcome but cannot be adequately evaluated in the preoperative setting. The present study aims to elucidate the contribution of the radiomic analysis of non-tumoral parenchyma to the prediction of complications after elective LR. All consecutive patients undergoing LR between 2017 and 2021 having a preoperative computed tomography (CT) were included. Patients with associated biliary/colorectal resection were excluded. Radiomic features were extracted from a virtual biopsy of non-tumoral liver parenchyma (a 2 mL cylinder) outlined in the portal phase of preoperative CT. Data were internally validated. Overall, 378 patients were analyzed (245 males/133 females-median age 67 years-39 cirrhotics). Radiomics increased the performances of the preoperative clinical models for both liver dysfunction (at internal validaton, AUC = 0.727 vs. 0.678) and bile leak (AUC = 0.744 vs. 0.614). The final predictive model combined clinical and radiomic variables: for bile leak, segment 1 resection, exposure of Glissonean pedicles, HU-related indices, NGLDM_Contrast, GLRLM indices, and GLZLM_ZLNU; for liver dysfunction, cirrhosis, liver function tests, major hepatectomy, segment 1 resection, and NGLDM_Contrast. The combined clinical-radiomic model for bile leak based on preoperative data performed even better than the model including the intraoperative data (AUC = 0.629). The textural features extracted from a virtual biopsy of non-tumoral liver parenchyma improved the prediction of postoperative liver dysfunction and bile leak, implementing information given by standard clinical data. Radiomics should become part of the preoperative assessment of candidates to LR.

摘要

肝切除术 (LR) 的术前风险评估仍是一个悬而未决的问题。肝实质特征影响手术结果,但在术前评估中无法充分评估。本研究旨在阐明非肿瘤性肝实质的放射组学分析对预测择期 LR 后并发症的贡献。纳入 2017 年至 2021 年间行 LR 并具有术前 CT 的所有连续患者,排除合并胆道/结直肠切除术的患者。从术前 CT 门静脉期勾画的非肿瘤性肝实质(2ml 圆柱体)的虚拟活检中提取放射组学特征。数据进行内部验证。共分析 378 例患者(245 例男性/133 例女性-中位年龄 67 岁-39 例肝硬化)。放射组学增加了术前临床模型对肝功能障碍(内部验证时,AUC=0.727 与 0.678)和胆漏(AUC=0.744 与 0.614)的预测性能。最终的预测模型结合了临床和放射组学变量:胆漏的预测,1 段肝切除术,Glissonean 蒂的暴露,HU 相关指数,NGLDM_Contrast,GLRLM 指数和 GLZLM_ZLNU;肝功能障碍的预测,肝硬化,肝功能检查,大肝切除术,1 段肝切除术和 NGLDM_Contrast。基于术前数据的联合临床放射组学模型对胆漏的预测甚至优于包括术中数据的模型(AUC=0.629)。从非肿瘤性肝实质的虚拟活检中提取的纹理特征改善了对术后肝功能障碍和胆漏的预测,实施了标准临床数据提供的信息。放射组学应该成为 LR 候选者术前评估的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验