Suppr超能文献

带有电流密度约束的多靶点 TMS 线圈设计的高级流水线。

Advanced Pipeline for Designing Multi-Locus TMS Coils With Current Density Constraints.

出版信息

IEEE Trans Biomed Eng. 2023 Jul;70(7):2025-2034. doi: 10.1109/TBME.2023.3234119. Epub 2023 Jun 19.

Abstract

OBJECTIVE

This work aims for a method to design manufacturable windings for transcranial magnetic stimulation (TMS) coils with fine control over the induced electric field (E-field) distributions. Such TMS coils are required for multi-locus TMS (mTMS).

METHODS

We introduce a new mTMS coil design workflow with increased flexibility in target E-field definition and faster computations compared to our previous method. We also incorporate custom current density and E-field fidelity constraints to ensure that the target E-fields are accurately reproduced with feasible winding densities in the resulting coil designs. We validated the method by designing, manufacturing, and characterizing a 2-coil mTMS transducer for focal rat brain stimulation.

RESULTS

Applying the constraints reduced the computed maximum surface current densities from 15.4 and 6.6 kA/mm to the target value 4.7 kA/mm, yielding winding paths suitable for a 1.5-mm-diameter wire with 7-kA maximum currents while still replicating the target E-fields with the predefined 2.8% maximum error in the FOV. The optimization time was reduced by two thirds compared to our previous method.

CONCLUSION

The developed method allowed us to design a manufacturable, focal 2-coil mTMS transducer for rat TMS impossible to attain with our previous design workflow.

SIGNIFICANCE

The presented workflow enables considerably faster design and manufacturing of previously unattainable mTMS transducers with increased control over the induced E-field distribution and winding density, opening new possibilities for brain research and clinical TMS.

摘要

目的

本工作旨在为经颅磁刺激(TMS)线圈设计一种可制造的方法,以精细控制感应电场(E 场)分布。这种 TMS 线圈是多部位 TMS(mTMS)所需要的。

方法

我们引入了一种新的 mTMS 线圈设计工作流程,与我们之前的方法相比,该方法在目标 E 场定义方面具有更高的灵活性和更快的计算速度。我们还纳入了自定义电流密度和 E 场保真度约束,以确保在生成的线圈设计中以可行的绕组密度准确再现目标 E 场。我们通过设计、制造和表征用于聚焦大鼠脑刺激的 2 线圈 mTMS 换能器来验证该方法。

结果

应用约束将计算得到的最大表面电流密度从 15.4 和 6.6 kA/mm 降低到目标值 4.7 kA/mm,从而产生适合直径为 1.5mm、最大电流为 7kA 的绕组路径,同时仍在 FOV 中以预设的 2.8%最大误差复制目标 E 场。与我们之前的方法相比,优化时间缩短了三分之二。

结论

所开发的方法使我们能够设计出一种可制造的、聚焦的 2 线圈 mTMS 换能器,用于大鼠 TMS,这是我们之前的设计工作流程无法实现的。

意义

所提出的工作流程能够显著加快之前无法实现的 mTMS 换能器的设计和制造速度,并增加对感应 E 场分布和绕组密度的控制,为脑研究和临床 TMS 开辟了新的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验