Suppr超能文献

多靶点经颅磁刺激系统用于电子靶向脑刺激。

Multi-locus transcranial magnetic stimulation system for electronically targeted brain stimulation.

机构信息

Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.

Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.

出版信息

Brain Stimul. 2022 Jan-Feb;15(1):116-124. doi: 10.1016/j.brs.2021.11.014. Epub 2021 Nov 21.

Abstract

BACKGROUND

Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of the cortex. In multi-locus TMS (mTMS), the stimulating electric field (E-field) is controlled electronically without coil movement by adjusting currents in the coils of a transducer.

OBJECTIVE

To develop an mTMS system that allows adjusting the location and orientation of the E-field maximum within a cortical region.

METHODS

We designed and manufactured a planar 5-coil mTMS transducer to allow controlling the maximum of the induced E-field within a cortical region approximately 30 mm in diameter. We developed electronics with a design consisting of independently controlled H-bridge circuits to drive up to six TMS coils. To control the hardware, we programmed software that runs on a field-programmable gate array and a computer. To induce the desired E-field in the cortex, we developed an optimization method to calculate the currents needed in the coils. We characterized the mTMS system and conducted a proof-of-concept motor-mapping experiment on a healthy volunteer. In the motor mapping, we kept the transducer placement fixed while electronically shifting the E-field maximum on the precentral gyrus and measuring electromyography from the contralateral hand.

RESULTS

The transducer consists of an oval coil, two figure-of-eight coils, and two four-leaf-clover coils stacked on top of each other. The technical characterization indicated that the mTMS system performs as designed. The measured motor evoked potential amplitudes varied consistently as a function of the location of the E-field maximum.

CONCLUSION

The developed mTMS system enables electronically targeted brain stimulation within a cortical region.

摘要

背景

经颅磁刺激(TMS)允许对皮质进行非侵入性刺激。在多点 TMS(mTMS)中,通过调整换能器线圈中的电流,电子控制刺激电场(E 场),而无需线圈移动。

目的

开发一种 mTMS 系统,该系统允许在皮质区域内调整 E 场最大值的位置和方向。

方法

我们设计并制造了一个平面 5 线圈 mTMS 换能器,以允许在直径约 30mm 的皮质区域内控制感应 E 场的最大值。我们开发了具有独立控制 H 桥电路设计的电子设备,以驱动多达六个 TMS 线圈。为了控制硬件,我们编写了在现场可编程门阵列和计算机上运行的软件。为了在皮质中产生所需的 E 场,我们开发了一种优化方法来计算线圈中所需的电流。我们对 mTMS 系统进行了特性描述,并在健康志愿者中进行了电机映射实验的概念验证。在电机映射中,我们保持换能器放置固定,而在中央前回上电子地移动 E 场最大值,并测量对侧手部的肌电图。

结果

换能器由一个椭圆形线圈、两个八字形线圈和两个四叶形线圈堆叠而成。技术特性表明,mTMS 系统按设计运行。测量的运动诱发电位幅度随着 E 场最大值的位置而一致变化。

结论

开发的 mTMS 系统能够在皮质区域内进行电子靶向脑刺激。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a655/8807400/72e7da334378/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验