Suppr超能文献

基于子空间聚类的多视图特征选择对胰腺切除术后新发糖尿病的预测

Prediction of New-Onset Diabetes After Pancreatectomy With Subspace Clustering Based Multi-View Feature Selection.

作者信息

Hu Peijun, Li Xiang, Lu Na, Dong Kaiqi, Bai Xueli, Liang Tingbo, Li Jingsong

出版信息

IEEE J Biomed Health Inform. 2023 Mar;27(3):1588-1599. doi: 10.1109/JBHI.2022.3233402. Epub 2023 Mar 7.

Abstract

The pancreas plays an important role in glucose metabolism, and developing diabetes or long-term glucose metabolism disturbance may be a prevalent sequela after pancreatectomy. Nevertheless, relative factors of new-onset diabetes after pancreatectomy stay unclear. Radiomics analysis is potential to identify image markers for disease prediction or prognosis. Meanwhile, combination of imaging and electronic medical record (EMR) showed superior performance than imaging or EMR alone in previous studies. One critical step is to identity predictors from high-dimensional features, and it is even more challenging to select and fuse imaging and EMR features. In this work, we develop a radiomics pipeline to assess postoperative new-onset diabetes risk of patients undergoing distal pancreatectomy. Specifically, we extract multiscale image features with 3D wavelet transformation, and include patients' characteristics, body composition and pancreas volume information as clinical features. Then, we propose a multi-view subspace clustering guided feature selection method (MSCUFS) for the selection and fusion of image and clinical features. Finally, a prediction model is constructed with classical machine learning classifier. Experimental results on an established distal pancreatectomy cohort showed that the SVM model with combined imaging and EMR features demonstrated good discrimination, with an AUC value of 0.824, which improved the model with image features alone by 0.037 AUC. Compared with state-of-the-art feature selection methods, the proposed MSCUFS has superior performance in fusing image and clinical features.

摘要

胰腺在葡萄糖代谢中发挥着重要作用,胰腺切除术后发生糖尿病或长期葡萄糖代谢紊乱可能是一种常见的后遗症。然而,胰腺切除术后新发糖尿病的相关因素仍不清楚。放射组学分析有潜力识别用于疾病预测或预后的图像标志物。同时,在先前的研究中,影像学与电子病历(EMR)相结合的表现优于单独的影像学或EMR。关键的一步是从高维特征中识别预测因子,而选择和融合影像学与EMR特征则更具挑战性。在这项工作中,我们开发了一种放射组学流程来评估接受胰体尾切除术患者术后新发糖尿病的风险。具体而言,我们通过三维小波变换提取多尺度图像特征,并将患者特征、身体成分和胰腺体积信息作为临床特征纳入。然后,我们提出了一种多视图子空间聚类引导的特征选择方法(MSCUFS)用于图像和临床特征的选择与融合。最后,使用经典机器学习分类器构建预测模型。在一个既定的胰体尾切除术队列上的实验结果表明,结合影像学和EMR特征的支持向量机(SVM)模型具有良好的区分能力,曲线下面积(AUC)值为0.824,比仅使用图像特征的模型提高了0.037的AUC。与现有最先进的特征选择方法相比,所提出的MSCUFS在融合图像和临床特征方面具有更优的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验