Suppr超能文献

用于鲁棒目标跟踪的部分感知框架

Part-Aware Framework for Robust Object Tracking.

作者信息

Li Shengjie, Zhao Shuai, Cheng Bo, Chen Junliang

出版信息

IEEE Trans Image Process. 2023;32:750-763. doi: 10.1109/TIP.2022.3232941. Epub 2023 Jan 11.

Abstract

The local parts of the target are vitally important for robust object tracking. Nevertheless, existing excellent context regression methods involving siamese networks and discrimination correlation filters mostly represent the target appearance from the holistic model, showing high sensitivity in scenarios with partial occlusion and drastic appearance changes. In this paper, we address this issue by proposing a novel part-aware framework based on context regression, which simultaneously considers the global and local parts of the target and fully exploits their relationship to be collaboratively aware of the target state online. To this end, the spatial-temporal measure among context regressors corresponding to multiple parts is designed to evaluate the tracking quality of each part regressor by solving the imbalance among global and local parts. The coarse target locations provided by part regressors are further aggregated by treating their measures as weights to refine the final target location. Furthermore, the divergence of multiple part regressors in each frame reveals the interference degree of background noise, which is quantified to control the proposed combination window functions in part regressors to adaptively filter redundant noise. Besides, the spatial-temporal information among part regressors is also leveraged to assist in accurately estimating the target scale. Extensive evaluations demonstrate that the proposed framework help many context regression trackers achieve performance improvements and perform favorably against state-of-the-art methods on the popular benchmarks: OTB, TC128, UAV, UAVDT, VOT, TrackingNet, GOT-10k, LaSOT.

摘要

目标的局部部分对于稳健的目标跟踪至关重要。然而,现有的涉及暹罗网络和判别相关滤波器的优秀上下文回归方法大多从整体模型表示目标外观,在部分遮挡和外观剧烈变化的场景中表现出高敏感性。在本文中,我们通过提出一种基于上下文回归的新颖的部分感知框架来解决这个问题,该框架同时考虑目标的全局和局部部分,并充分利用它们之间的关系来在线协同感知目标状态。为此,设计了对应于多个部分的上下文回归器之间的时空度量,通过解决全局和局部部分之间的不平衡来评估每个部分回归器的跟踪质量。部分回归器提供的粗略目标位置通过将其度量作为权重进一步聚合,以细化最终目标位置。此外,每个帧中多个部分回归器之间的数据差异揭示了背景噪声的干扰程度,该干扰程度被量化以控制部分回归器中提出的组合窗口函数,以自适应地过滤冗余噪声。此外,部分回归器之间的时空信息也被用来协助准确估计目标尺度。广泛的评估表明,所提出的框架帮助许多上下文回归跟踪器实现了性能提升,并且在流行基准测试:OTB、TC128、无人机、无人机数据集、VOT、TrackingNet、GOT-10k、LaSOT上优于现有最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验