Suppr超能文献

NetPro:基于邻域交互的标签传播药物重定位

NetPro: Neighborhood Interaction-Based Drug Repositioning via Label Propagation.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 May-Jun;20(3):2159-2169. doi: 10.1109/TCBB.2023.3234331. Epub 2023 Jun 5.

Abstract

Drug repositioning is an important approach for predicting new disease indications of the existing drugs in drug discovery. A great progress has been achieved in drug repositioning. However, effectively utilizing the localized neighborhood interaction features of drug and disease in drug-disease associations remains challenging. This paper proposes a neighborhood interaction-based method called NetPro for drug repositioning via label propagation. In NetPro, we first formulate the known drug-disease associations, various disease and drug similarities from different perspectives to construct drug-drug and disease-disease networks. Meanwhile we employ the nearest neighbors and their interactions in the constructed networks to devise a new approach for computing drug similarity and disease similarity. To implement the prediction of new drugs or diseases, a preprocessing step is applied to renew the known drug-disease associations using our calculated drug and disease similarities. We then employ a label propagation model to predict drug-disease associations by the drug and disease linear neighborhood similarities derived from the renewed drug-disease associations. The experimental results on three benchmark datasets show that NetPro can effectively identify potential drug-disease associations and achieve better prediction performance than the existing methods. Case studies further demonstrate that NetPro is capable of predicting promising candidate disease indications for drugs.

摘要

药物重定位是一种预测现有药物新疾病适应症的重要方法,在药物发现中具有重要意义。药物重定位已经取得了很大的进展,然而,有效地利用药物和疾病在药物-疾病关联中的局部邻域交互特征仍然具有挑战性。本文提出了一种基于邻域交互的方法 NetPro,用于通过标签传播进行药物重定位。在 NetPro 中,我们首先构建药物-药物和疾病-疾病网络,将已知的药物-疾病关联以及来自不同视角的各种疾病和药物相似性公式化。同时,我们利用构建网络中的最近邻居及其交互作用,设计一种新的方法来计算药物相似性和疾病相似性。为了实现新药物或新疾病的预测,我们采用预处理步骤利用计算得到的药物和疾病相似性更新已知的药物-疾病关联。然后,我们采用标签传播模型,通过从更新后的药物-疾病关联中得到的药物和疾病线性邻域相似性来预测药物-疾病关联。在三个基准数据集上的实验结果表明,NetPro 可以有效地识别潜在的药物-疾病关联,并实现比现有方法更好的预测性能。案例研究进一步表明,NetPro 能够预测药物的有前途的候选疾病适应症。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验