Suppr超能文献

二元变化引导的高光谱多类变化检测

Binary Change Guided Hyperspectral Multiclass Change Detection.

作者信息

Hu Meiqi, Wu Chen, Du Bo, Zhang Liangpei

出版信息

IEEE Trans Image Process. 2023;32:791-806. doi: 10.1109/TIP.2022.3233187. Epub 2023 Jan 18.

Abstract

Characterized by tremendous spectral information, hyperspectral image is able to detect subtle changes and discriminate various change classes for change detection. The recent research works dominated by hyperspectral binary change detection, however, cannot provide fine change classes information. And most methods incorporating spectral unmixing for hyperspectral multiclass change detection (HMCD), yet suffer from the neglection of temporal correlation and error accumulation. In this study, we proposed an unsupervised Binary Change Guided hyperspectral multiclass change detection Network (BCG-Net) for HMCD, which aims at boosting the multiclass change detection result and unmixing result with the mature binary change detection approaches. In BCG-Net, a novel partial-siamese united-unmixing module is designed for multi-temporal spectral unmixing, and a groundbreaking temporal correlation constraint directed by the pseudo-labels of binary change detection result is developed to guide the unmixing process from the perspective of change detection, encouraging the abundance of the unchanged pixels more coherent and that of the changed pixels more accurate. Moreover, an innovative binary change detection rule is put forward to deal with the problem that traditional rule is susceptible to numerical values. The iterative optimization of the spectral unmixing process and the change detection process is proposed to eliminate the accumulated errors and bias from unmixing result to change detection result. The experimental results demonstrate that our proposed BCG-Net could achieve comparative or even outstanding performance of multiclass change detection among the state-of-the-art approaches and gain better spectral unmixing results at the same time.

摘要

高光谱图像具有丰富的光谱信息,能够检测细微变化并区分各种变化类别以进行变化检测。然而,近期以高光谱二元变化检测为主导的研究工作无法提供精细的变化类别信息。并且,大多数用于高光谱多类别变化检测(HMCD)的包含光谱解混的方法,仍存在忽视时间相关性和误差累积的问题。在本研究中,我们提出了一种用于HMCD的无监督二元变化引导高光谱多类别变化检测网络(BCG-Net),其旨在利用成熟的二元变化检测方法提升多类别变化检测结果和解混结果。在BCG-Net中,设计了一种新颖的部分连体联合解混模块用于多时间光谱解混,并开发了一种由二元变化检测结果的伪标签引导的开创性时间相关性约束,从变化检测的角度指导解混过程,促使未变化像素的丰度更连贯,变化像素的丰度更准确。此外,提出了一种创新的二元变化检测规则来处理传统规则易受数值影响这一问题。提出了光谱解混过程和变化检测过程的迭代优化,以消除从解混结果到变化检测结果的累积误差和偏差。实验结果表明,我们提出的BCG-Net在多类别变化检测方面能够在当前最先进的方法中取得可比甚至优异的性能,同时获得更好的光谱解混结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验