Suppr超能文献

用于神经形态运动控制的耦合忆阻器振荡器:建模与分析

Coupled Memristor Oscillators for Neuromorphic Locomotion Control: Modeling and Analysis.

作者信息

Bonagiri Akhil, Biswas Dipayan, Chakravarthy Srinivasa

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):8638-8652. doi: 10.1109/TNNLS.2022.3231298. Epub 2024 Jun 3.

Abstract

The recent surge of interest in brain-inspired architectures along with the development of nonlinear dynamical electronic devices and circuits has enabled energy-efficient hardware realizations of several important neurobiological systems and features. Central pattern generator (CPG) is one such neural system underlying the control of various rhythmic motor behaviors in animals. A CPG can produce spontaneous coordinated rhythmic output signals without any feedback mechanism, ideally realizable by a system of coupled oscillators. Bio-inspired robotics aims to use this approach to control the limb movement for synchronized locomotion. Hence, devising a compact and energy-efficient hardware platform to implement neuromorphic CPGs would be of great benefit for bio-inspired robotics. In this work, we demonstrate that four capacitively coupled vanadium dioxide (VO2) memristor-based oscillators can produce spatiotemporal patterns corresponding to the primary quadruped gaits. The phase relationships underlying the gait patterns are governed by four tunable bias voltages (or four coupling strengths) making the network programmable, reducing the complex problem of gait selection and dynamic interleg coordination to the choice of four control parameters. To this end, we first introduce a dynamical model for the VO2 memristive nanodevice, then perform analytical and bifurcation analysis of a single oscillator, and finally demonstrate the dynamics of coupled oscillators through extensive numerical simulations. We also show that adopting the presented model for a VO2 memristor reveals a striking resemblance between VO2 memristor oscillators and conductance-based biological neuron models such as the Morris-Lecar (ML) model. This can inspire and guide further research on implementation of neuromorphic memristor circuits that emulate neurobiological phenomena.

摘要

随着对受脑启发架构的兴趣激增,以及非线性动态电子设备和电路的发展,已经实现了几种重要神经生物学系统和特征的节能硬件实现。中枢模式发生器(CPG)就是这样一种神经系统,它是动物各种节律性运动行为控制的基础。CPG可以在没有任何反馈机制的情况下产生自发的协调节律输出信号,理想情况下可由耦合振荡器系统实现。受生物启发的机器人技术旨在利用这种方法来控制肢体运动以实现同步运动。因此,设计一个紧凑且节能的硬件平台来实现神经形态CPG对受生物启发的机器人技术将大有裨益。在这项工作中,我们证明了四个基于电容耦合二氧化钒(VO₂)忆阻器的振荡器可以产生与主要四足动物步态相对应的时空模式。步态模式背后的相位关系由四个可调偏置电压(或四个耦合强度)控制,使网络可编程,将步态选择和动态腿间协调的复杂问题简化为四个控制参数的选择。为此,我们首先介绍VO₂忆阻纳米器件的动力学模型,然后对单个振荡器进行分析和分岔分析,最后通过广泛的数值模拟展示耦合振荡器的动力学。我们还表明,采用所提出的VO₂忆阻器模型揭示了VO₂忆阻器振荡器与基于电导的生物神经元模型(如莫里斯 - 莱卡(ML)模型)之间的惊人相似之处。这可以启发和指导对模拟神经生物学现象的神经形态忆阻器电路实现的进一步研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验