Buono P L, Golubitsky M
Centre de Recherche Mathématique, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Qué., H3C 3J7, Canada.
J Math Biol. 2001 Apr;42(4):291-326. doi: 10.1007/s002850000058.
In this paper we continue the analysis of a network of symmetrically coupled cells modeling central pattern generators for quadruped locomotion proposed by Golubitsky, Stewart, Buono, and Collins. By a cell we mean a system of ordinary differential equations and by a coupled cell system we mean a network of identical cells with coupling terms. We have three main results in this paper. First, we show that the proposed network is the simplest one modeling the common quadruped gaits of walk, trot, and pace. In doing so we prove a general theorem classifying spatio-temporal symmetries of periodic solutions to equivariant systems of differential equations. We also specialize this theorem to coupled cell systems. Second, this paper focuses on primary gaits; that is, gaits that are modeled by output signals from the central pattern generator where each cell emits the same waveform along with exact phase shifts between cells. Our previous work showed that the network is capable of producing six primary gaits. Here, we show that under mild assumptions on the cells and the coupling of the network, primary gaits can be produced from Hopf bifurcation by varying only coupling strengths of the network. Third, we discuss the stability of primary gaits and exhibit these solutions by performing numerical simulations using the dimensionless Morris-Lecar equations for the cell dynamics.
在本文中,我们继续分析由戈卢比茨基、斯图尔特、布奥诺和柯林斯提出的用于模拟四足动物运动的中枢模式发生器的对称耦合细胞网络。我们所说的一个细胞是指一个常微分方程组,而耦合细胞系统是指由具有耦合项的相同细胞组成的网络。本文有三个主要结果。首先,我们表明所提出的网络是模拟常见的四足动物行走、小跑和踱步步态的最简单网络。在此过程中,我们证明了一个对微分方程等变系统周期解的时空对称性进行分类的一般定理。我们还将该定理专门应用于耦合细胞系统。其次,本文关注主要步态;也就是说,由中枢模式发生器的输出信号建模的步态,其中每个细胞发出相同的波形,并且细胞之间具有精确的相位偏移。我们之前的工作表明该网络能够产生六种主要步态。在这里,我们表明在对细胞和网络耦合的适度假设下,仅通过改变网络的耦合强度就可以从霍普夫分岔产生主要步态。第三,我们讨论主要步态的稳定性,并通过使用细胞动力学的无量纲莫里斯 - 莱卡尔方程进行数值模拟来展示这些解。