Liu Yanbei, Fan Lianxi, Wang Xiao, Xiao Zhitao, Ma Shuai, Pang Yanwei, Lin Jerry Chun-Wei
IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):9340-9351. doi: 10.1109/TNNLS.2022.3232709. Epub 2024 Jul 8.
Heterogeneous graphs with multiple types of nodes and link relationships are ubiquitous in many real-world applications. Heterogeneous graph neural networks (HGNNs) as an efficient technique have shown superior capacity of dealing with heterogeneous graphs. Existing HGNNs usually define multiple meta-paths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models only consider the simple relationships (i.e., concatenation or linear superposition) between different meta-paths, ignoring more general or complex relationships. In this article, we propose a novel unsupervised framework termed Heterogeneous Graph neural network with bidirectional encoding representation (HGBER) to learn comprehensive node representations. Specifically, the contrastive forward encoding is firstly performed to extract node representations on a set of meta-specific graphs corresponding to meta-paths. We then introduce the reversed encoding for the degradation process from the final node representations to each single meta-specific node representations. Moreover, to learn structure-preserving node representations, we further utilize a self-training module to discover the optimal node distribution through iterative optimization. Extensive experiments on five open public datasets show that the proposed HGBER model outperforms the state-of-the-art HGNNs baselines by 0.8%-8.4% in terms of accuracy on most datasets in various downstream tasks.
具有多种类型节点和链接关系的异构图在许多实际应用中普遍存在。异构图神经网络(HGNN)作为一种高效技术,已显示出处理异构图的卓越能力。现有的HGNN通常在异构图中定义多个元路径,以捕获复合关系并指导邻居选择。然而,这些模型仅考虑不同元路径之间的简单关系(即拼接或线性叠加),而忽略了更一般或复杂的关系。在本文中,我们提出了一种新颖的无监督框架,称为具有双向编码表示的异构图神经网络(HGBER),以学习全面的节点表示。具体而言,首先执行对比正向编码,以在与元路径对应的一组元特定图上提取节点表示。然后,我们引入反向编码用于从最终节点表示到每个单个元特定节点表示的退化过程。此外,为了学习保留结构的节点表示,我们进一步利用自训练模块通过迭代优化来发现最佳节点分布。在五个开放公共数据集上进行的大量实验表明,所提出的HGBER模型在各种下游任务的大多数数据集上,在准确性方面比当前最先进的HGNN基线高出0.8%-8.4%。