Department of Computer Science and Engineering, Korea University, Seoul, South Korea.
Neural Netw. 2022 Sep;153:104-119. doi: 10.1016/j.neunet.2022.05.026. Epub 2022 Jun 4.
Graph Neural Networks (GNNs) have been widely applied to various fields due to their powerful representations of graph-structured data. Despite the success of GNNs, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. To address these limitations, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which preclude noisy connections and include useful connections (e.g., meta-paths) for tasks, while learning effective node representations on the new graphs in an end-to-end fashion. We further propose enhanced version of GTNs, Fast Graph Transformer Networks (FastGTNs), that improve scalability of graph transformations. Compared to GTNs, FastGTNs are up to 230× and 150× faster in inference and training, and use up to 100× and 148× less memory while allowing the identical graph transformations as GTNs. In addition, we extend graph transformations to the semantic proximity of nodes allowing non-local operations beyond meta-paths. Extensive experiments on both homogeneous graphs and heterogeneous graphs show that GTNs and FastGTNs with non-local operations achieve the state-of-the-art performance for node classification tasks. The code is available: https://github.com/seongjunyun/Graph_Transformer_Networks.
图神经网络 (GNN) 由于能够对图结构数据进行强大的表示,因此已被广泛应用于各个领域。尽管 GNN 取得了成功,但大多数现有的 GNN 都是为在固定的、同质的图上学习节点表示而设计的。当在指定不正确的图或包含各种类型节点和边的异构图上学习表示时,这些限制尤其会成为问题。为了解决这些限制,我们提出了图变换网络 (GTN),它能够生成新的图结构,排除噪声连接,并包含有用的连接(例如,元路径),同时以端到端的方式在新图上学习有效的节点表示。我们进一步提出了 GTN 的增强版本,快速图变换网络 (FastGTN),它提高了图变换的可扩展性。与 GTN 相比,FastGTN 在推理和训练中的速度分别提高了 230×和 150×,使用的内存分别减少了 100×和 148×,同时允许与 GTN 相同的图变换。此外,我们将图变换扩展到节点的语义相似性,允许进行超越元路径的非局部操作。在同质图和异构图上的广泛实验表明,具有非局部操作的 GTN 和 FastGTN 在节点分类任务中达到了最新的性能水平。代码可在以下网址获取:https://github.com/seongjunyun/Graph_Transformer_Networks。