Suppr超能文献

基于公平感知伪标签的平衡联邦半监督学习

Balanced Federated Semisupervised Learning With Fairness-Aware Pseudo-Labeling.

作者信息

Wei Xiao-Xiang, Huang Hua

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):9395-9407. doi: 10.1109/TNNLS.2022.3233093. Epub 2024 Jul 8.

Abstract

Federated semisupervised learning (FSSL) aims to train models with both labeled and unlabeled data in the federated settings, enabling performance improvement and easier deployment in realistic scenarios. However, the nonindependently identical distributed data in clients leads to imbalanced model training due to the unfair learning effects on different classes. As a result, the federated model exhibits inconsistent performance on not only different classes, but also different clients. This article presents a balanced FSSL method with the fairness-aware pseudo-labeling (FAPL) strategy to tackle the fairness issue. Specifically, this strategy globally balances the total number of unlabeled data samples which is capable to participate in model training. Then, the global numerical restrictions are further decomposed into personalized local restrictions for each client to assist the local pseudo-labeling. Consequently, this method derives a more fair federated model for all clients and gains better performance. Experiments on image classification datasets demonstrate the superiority of the proposed method over the state-of-the-art FSSL methods.

摘要

联邦半监督学习(FSSL)旨在在联邦设置中使用标记数据和未标记数据训练模型,从而在实际场景中提高性能并便于部署。然而,客户端中数据的非独立同分布导致模型训练不均衡,因为对不同类别存在不公平的学习影响。结果,联邦模型不仅在不同类别上,而且在不同客户端上都表现出不一致的性能。本文提出了一种具有公平感知伪标签(FAPL)策略的平衡FSSL方法来解决公平性问题。具体而言,该策略全局平衡能够参与模型训练的未标记数据样本总数。然后,将全局数值限制进一步分解为每个客户端的个性化局部限制,以辅助局部伪标签生成。因此,该方法为所有客户端推导出更公平的联邦模型,并获得更好的性能。在图像分类数据集上的实验证明了所提方法优于现有最先进的FSSL方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验