Gungor Cihan Berk, Mercier Patrick P, Toreyin Hakan
IEEE Trans Biomed Circuits Syst. 2023 Feb;17(1):33-44. doi: 10.1109/TBCAS.2023.3235786. Epub 2023 Mar 30.
This paper presents an ultra-low power electrocardiogram (ECG) processor that can detect QRS-waves in real time as the data streams in. The processor performs out-of-band noise suppression via a linear filter, and in-band noise suppression via a nonlinear filter. The nonlinear filter also enhances the QRS-waves by facilitating stochastic resonance. The processor identifies the QRS-waves on noise-suppressed and enhanced recordings using a constant threshold detector. For energy-efficiency and compactness, the processor exploits current-mode analog signal processing techniques, which significantly reduces the design complexity when implementing the second-order dynamics of the nonlinear filter. The processor is designed and implemented in TSMC 65 nm CMOS technology. In terms of detection performance, the processor achieves an average ${\bm{F}}1 = 99.88{\bm{% }}$ over the MIT-BIH Arrhythmia database and outperforms all previous ultra-low power ECG processors. The processor is the first that is validated against noisy ECG recordings of MIT-BIH NST and TELE databases, where it achieves better detection performances than most digital algorithms run on digital platforms. The design has a footprint of 0.08 mm and dissipates 2.2 nW when supplied by a single 1V supply, making it the first ultra-low power and real-time processor that facilitates stochastic resonance.
本文展示了一种超低功耗心电图(ECG)处理器,它能够在数据流输入时实时检测QRS波。该处理器通过线性滤波器进行带外噪声抑制,并通过非线性滤波器进行带内噪声抑制。非线性滤波器还通过促进随机共振来增强QRS波。该处理器使用恒定阈值检测器在经过噪声抑制和增强的记录上识别QRS波。为了实现高能效和紧凑性,该处理器采用电流模式模拟信号处理技术,这在实现非线性滤波器的二阶动态特性时显著降低了设计复杂度。该处理器采用台积电65纳米CMOS技术进行设计和实现。在检测性能方面,该处理器在麻省理工学院 - 贝斯以色列女执事医疗中心心律失常数据库上实现了平均F1 = 99.88%,优于所有先前的超低功耗ECG处理器。该处理器是首个针对麻省理工学院 - 贝斯以色列女执事医疗中心NST和TELE数据库的嘈杂ECG记录进行验证的处理器,在这些记录上它实现了比大多数在数字平台上运行的数字算法更好的检测性能。该设计的占地面积为0.08平方毫米,在由单一1V电源供电时功耗为2.2纳瓦,使其成为首个促进随机共振的超低功耗实时处理器。