Suppr超能文献

基于矩阵分解和三层异质网络预测潜在的药物-微生物关联。

Prediction of potential drug-microbe associations based on matrix factorization and a three-layer heterogeneous network.

机构信息

School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China.

School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China.

出版信息

Comput Biol Chem. 2023 Jun;104:107857. doi: 10.1016/j.compbiolchem.2023.107857. Epub 2023 Apr 1.

Abstract

Microbes in the human body are closely linked to many complex human diseases and are emerging as new drug targets. These microbes play a crucial role in drug development and disease treatment. Traditional methods of biological experiments are not only time-consuming but also costly. Using computational methods to predict microbe-drug associations can effectively complement biological experiments. In this experiment, we constructed heterogeneity networks for drugs, microbes, and diseases using multiple biomedical data sources. Then, we developed a model with matrix factorization and a three-layer heterogeneous network (MFTLHNMDA) to predict potential drug-microbe associations. The probability of microbe-drug association was obtained by a global network-based update algorithm. Finally, the performance of MFTLHNMDA was evaluated in the framework of leave-one-out cross-validation (LOOCV) and 5-fold cross-validation (5-fold CV). The results showed that our model performed better than six state-of-the-art methods that had AUC of 0.9396 and 0.9385 + /- 0.0000, respectively. This case study further confirms the effectiveness of MFTLHNMDA in identifying potential drug-microbe associations and new drug-microbe associations.

摘要

人体内的微生物与许多复杂的人类疾病密切相关,它们正成为新的药物靶点。这些微生物在药物开发和疾病治疗中起着至关重要的作用。传统的生物学实验方法不仅耗时,而且成本高昂。使用计算方法预测微生物-药物的关联可以有效地补充生物学实验。在这个实验中,我们使用多种生物医学数据来源构建了药物、微生物和疾病的异质网络。然后,我们开发了一个基于矩阵分解和三层异质网络的模型(MFTLHNMDA)来预测潜在的药物-微生物关联。通过全局网络更新算法获得微生物-药物关联的概率。最后,在留一交叉验证(LOOCV)和 5 折交叉验证(5-fold CV)框架下评估 MFTLHNMDA 的性能。结果表明,我们的模型比六种最先进的方法表现更好,它们的 AUC 分别为 0.9396 和 0.9385+/-0.0000。这个案例研究进一步证实了 MFTLHNMDA 在识别潜在药物-微生物关联和新的药物-微生物关联方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验