Suppr超能文献

基于图注意力网络和双层随机森林的新型微生物药物关联预测模型。

A novel microbe-drug association prediction model based on graph attention networks and bilayer random forest.

机构信息

Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.

出版信息

BMC Bioinformatics. 2024 Feb 20;25(1):78. doi: 10.1186/s12859-024-05687-9.

Abstract

BACKGROUND

In recent years, the extensive use of drugs and antibiotics has led to increasing microbial resistance. Therefore, it becomes crucial to explore deep connections between drugs and microbes. However, traditional biological experiments are very expensive and time-consuming. Therefore, it is meaningful to develop efficient computational models to forecast potential microbe-drug associations.

RESULTS

In this manuscript, we proposed a novel prediction model called GARFMDA by combining graph attention networks and bilayer random forest to infer probable microbe-drug correlations. In GARFMDA, through integrating different microbe-drug-disease correlation indices, we constructed two different microbe-drug networks first. And then, based on multiple measures of similarity, we constructed a unique feature matrix for drugs and microbes respectively. Next, we fed these newly-obtained microbe-drug networks together with feature matrices into the graph attention network to extract the low-dimensional feature representations for drugs and microbes separately. Thereafter, these low-dimensional feature representations, along with the feature matrices, would be further inputted into the first layer of the Bilayer random forest model to obtain the contribution values of all features. And then, after removing features with low contribution values, these contribution values would be fed into the second layer of the Bilayer random forest to detect potential links between microbes and drugs.

CONCLUSIONS

Experimental results and case studies show that GARFMDA can achieve better prediction performance than state-of-the-art approaches, which means that GARFMDA may be a useful tool in the field of microbe-drug association prediction in the future. Besides, the source code of GARFMDA is available at https://github.com/KuangHaiYue/GARFMDA.git.

摘要

背景

近年来,药物和抗生素的广泛使用导致微生物耐药性不断增加。因此,探索药物与微生物之间的深层联系变得至关重要。然而,传统的生物学实验非常昂贵且耗时。因此,开发有效的计算模型来预测潜在的微生物-药物关联具有重要意义。

结果

在本研究中,我们提出了一种名为 GARFMDA 的新预测模型,该模型结合了图注意力网络和双层随机森林来推断可能的微生物-药物相关性。在 GARFMDA 中,我们通过整合不同的微生物-药物-疾病关联指数,首先构建了两个不同的微生物-药物网络。然后,基于多种相似性度量,我们分别构建了一个独特的药物和微生物特征矩阵。接下来,我们将这些新获得的微生物-药物网络与特征矩阵一起输入到图注意力网络中,分别提取药物和微生物的低维特征表示。然后,这些低维特征表示以及特征矩阵将进一步输入到双层随机森林模型的第一层,以获得所有特征的贡献值。然后,在去除贡献值较低的特征后,这些贡献值将被输入到双层随机森林的第二层,以检测微生物和药物之间的潜在联系。

结论

实验结果和案例研究表明,GARFMDA 可以比最先进的方法实现更好的预测性能,这意味着 GARFMDA 可能成为未来微生物-药物关联预测领域的有用工具。此外,GARFMDA 的源代码可在 https://github.com/KuangHaiYue/GARFMDA.git 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14f7/10877932/9b512d18afdd/12859_2024_5687_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验