Department of Applied Physics and Chemistry, University of Taipei, Taipei 10048, Taiwan.
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, United States of America.
Nanotechnology. 2023 Apr 28;34(28). doi: 10.1088/1361-6528/acca8a.
The performance of supercapacitors strongly depends on the electrochemical characterizations of electrode materials. Herein, a composite material consisted of iron(III) oxide (FeO) and multilayer graphene-wrapped copper nanoparticles (FeO/MLG-Cu NPs) is fabricated on a flexible carbon cloth (CC) substrate via two-step synthesis process for supercapacitor application. Where, MLG-Cu NPs are prepared on CC by one-step chemical vapor deposition synthesis approach; thereafter, the FeOis further deposited on the MLG-Cu NPs/CC via successive ionic layer adsorption and reaction method. The related material characterizations of FeO/MLG-Cu NPs are well investigated by scanning electron microscopic, high resolution transmission electron microscopy), Raman spectrometer and X-ray photoelectron spectroscopy; the electrochemical behaviors of the pertinent electrodes are studied by cyclic voltammogram, galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy measurements. The flexible electrode with FeO/MLG-Cu NPs composites exhibits the best specific capacitance of 1092.6 mF cmat 1 A g, which is much higher than those of electrodes with FeO(863.7 mF cm), MLG-Cu NPs (257.4 mF cm), multilayer graphene hollow balls (MLGHBs, 14.4 mF cm) and FeO/MLGHBs (287.2 mF cm). FeO/MLG-Cu NPs electrode also exhibits an excellent GCD durability, and its capacitance remains 88% of its original value after 5000 cycles of the GCD process. Finally, a supercapacitor system consisted of four FeO/MLG-Cu NPs/CC electrodes can efficiently power various light-emitting diodes (i.e. red, yellow, green, and blue lights), demonstrating the practical application of FeO/MLG-Cu NPs/CC electrode.
超级电容器的性能强烈依赖于电极材料的电化学特性。在此,通过两步合成工艺,在柔性碳布(CC)基底上制备了由氧化铁(FeO)和多层石墨烯包裹的铜纳米粒子(FeO/MLG-Cu NPs)组成的复合材料,用于超级电容器应用。其中,通过一步化学气相沉积合成方法在 CC 上制备 MLG-Cu NPs;此后,通过连续离子层吸附和反应方法将 FeO 进一步沉积在 MLG-Cu NPs/CC 上。通过扫描电子显微镜、高分辨率透射电子显微镜、拉曼光谱仪和 X 射线光电子能谱对 FeO/MLG-Cu NPs 的相关材料特性进行了很好的研究;通过循环伏安法、恒电流充放电(GCD)和电化学阻抗谱测量研究了相关电极的电化学行为。具有 FeO/MLG-Cu NPs 复合材料的柔性电极表现出最佳的比电容为 1092.6 mF cm 在 1 A g 下,远高于 FeO(863.7 mF cm)、MLG-Cu NPs(257.4 mF cm)、多层石墨烯空心球(MLGHBs,14.4 mF cm)和 FeO/MLGHBs(287.2 mF cm)的电极。FeO/MLG-Cu NPs 电极还表现出出色的 GCD 耐久性,在经过 5000 次 GCD 循环后,其电容保持其原始值的 88%。最后,由四个 FeO/MLG-Cu NPs/CC 电极组成的超级电容器系统可以有效地为各种发光二极管(即红色、黄色、绿色和蓝色光)供电,展示了 FeO/MLG-Cu NPs/CC 电极的实际应用。