Xu Haozhe, Zhong Shengzhou, Zhang Yu
School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.
Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, People's Republic of China.
Phys Med Biol. 2023 Apr 26;68(9). doi: 10.1088/1361-6560/accac8.
. Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD) which is an irreversible progressive neurodegenerative disease and its early diagnosis and intervention are of great significance. Recently, many deep learning methods have demonstrated the advantages of multi-modal neuroimages in MCI identification task. However, previous studies frequently simply concatenate patch-level features for prediction without modeling the dependencies among local features. Also, many methods only focus on modality-sharable information or modality-specific features and ignore their incorporation. This work aims to address above-mentioned issues and construct a model for accurate MCI identification.. In this paper, we propose a multi-level fusion network for MCI identification using multi-modal neuroimages, which consists of local representation learning and dependency-aware global representation learning stages. Specifically, for each patient, we first extract multi-pair of patches from multiple same position in multi-modal neuroimages. After that, in the local representation learning stage, multiple dual-channel sub-networks, each of which consists of two modality-specific feature extraction branches and three sine-cosine fusion modules, are constructed to learn local features that preserve modality-sharable and modality specific representations simultaneously. In the dependency-aware global representation learning stage, we further capture long-range dependencies among local representations and integrate them into global ones for MCI identification.. Experiments on ADNI-1/ADNI-2 datasets demonstrate the superior performance of the proposed method in MCI identification tasks (Accuracy: 0.802, sensitivity: 0.821, specificity: 0.767 in MCI diagnosis task; accuracy: 0.849, sensitivity: 0.841, specificity: 0.856 in MCI conversion task) when compared with state-of-the-art methods. The proposed classification model has demonstrated a promising potential to predict MCI conversion and identify the disease-related regions in the brain.. We propose a multi-level fusion network for MCI identification using multi-modal neuroimage. The results on ADNI datasets have demonstrated its feasibility and superiority.
轻度认知障碍(MCI)是阿尔茨海默病(AD)的前驱症状,AD是一种不可逆的进行性神经退行性疾病,其早期诊断和干预具有重要意义。最近,许多深度学习方法已证明多模态神经影像在MCI识别任务中的优势。然而,以往的研究常常只是简单地拼接补丁级别的特征进行预测,而没有对局部特征之间的依赖性进行建模。此外,许多方法只关注模态可共享信息或模态特定特征,而忽略了它们的结合。这项工作旨在解决上述问题,并构建一个用于准确MCI识别的模型。
在本文中,我们提出了一种使用多模态神经影像进行MCI识别的多级融合网络,该网络由局部表示学习和依赖感知全局表示学习阶段组成。具体来说,对于每个患者,我们首先从多模态神经影像的多个相同位置提取多对补丁。之后,在局部表示学习阶段,构建多个双通道子网络,每个子网络由两个模态特定特征提取分支和三个正弦-余弦融合模块组成,以学习同时保留模态可共享和模态特定表示的局部特征。在依赖感知全局表示学习阶段,我们进一步捕捉局部表示之间的长程依赖性,并将它们整合到全局表示中以进行MCI识别。
在ADNI-1/ADNI-2数据集上的实验表明,与现有方法相比,所提出的方法在MCI识别任务中具有卓越的性能(在MCI诊断任务中,准确率:0.802,灵敏度:0.821,特异性:0.767;在MCI转换任务中,准确率:0.849,灵敏度:0.841,特异性:0.856)。所提出的分类模型在预测MCI转换和识别大脑中与疾病相关区域方面显示出有前景的潜力。
我们提出了一种使用多模态神经影像进行MCI识别的多级融合网络。ADNI数据集上的结果证明了其可行性和优越性。