Suppr超能文献

基于术前牙片分析的牙髓病学预测模型:牙髓病预测深度神经网络的初步研究。

An Endodontic Forecasting Model Based on the Analysis of Preoperative Dental Radiographs: A Pilot Study on an Endodontic Predictive Deep Neural Network.

机构信息

Microscope Center, Department of Conservative, Yonsei University College of Dentistry, Seoul, Korea.

Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Korea.

出版信息

J Endod. 2023 Jun;49(6):710-719. doi: 10.1016/j.joen.2023.03.015. Epub 2023 Apr 4.

Abstract

INTRODUCTION

This study aimed to evaluate the use of deep convolutional neural network (DCNN) algorithms to detect clinical features and predict the three-year outcome of endodontic treatment on preoperative periapical radiographs.

METHODS

A database of single-root premolars that received endodontic treatment or retreatment by endodontists with presence of three-year outcome was prepared (n = 598). We constructed a 17-layered DCNN with a self-attention layer (Periapical Radiograph Explanatory System with Self-Attention Network [PRESSAN-17]), and the model was trained, validated, and tested to 1) detect 7 clinical features, that is, full coverage restoration, presence of proximal teeth, coronal defect, root rest, canal visibility, previous root filling, and periapical radiolucency and 2) predict the three-year endodontic prognosis by analyzing preoperative periapical radiographs as an input. During the prognostication test, a conventional DCNN without a self-attention layer (residual neural network [RESNET]-18) was tested for comparison. Accuracy and area under the receiver-operating-characteristic curve were mainly evaluated for performance comparison. Gradient-weighted class activation mapping was used to visualize weighted heatmaps.

RESULTS

PRESSAN-17 detected full coverage restoration (area under the receiver-operating-characteristic curve = 0.975), presence of proximal teeth (0.866), coronal defect (0.672), root rest (0.989), previous root filling (0.879), and periapical radiolucency (0.690) significantly, compared to the no-information rate (P < .05). Comparing the mean accuracy of 5-fold validation of 2 models, PRESSAN-17 (67.0%) showed a significant difference to RESNET-18 (63.4%, P < .05). Also, the area under average receiver-operating-characteristic of PRESSAN-17 was 0.638, which was significantly different compared to the no-information rate. Gradient-weighted class activation mapping demonstrated that PRESSAN-17 correctly identified clinical features.

CONCLUSIONS

Deep convolutional neural networks can detect several clinical features in periapical radiographs accurately. Based on our findings, well-developed artificial intelligence can support clinical decisions related to endodontic treatments in dentists.

摘要

引言

本研究旨在评估使用深度卷积神经网络(DCNN)算法来检测术前根尖片的临床特征并预测根管治疗的三年预后。

方法

准备了一个数据库,其中包含由牙髓病专家进行根管治疗或再治疗的单根前磨牙,并且有三年的预后(n=598)。我们构建了一个具有自注意力层的 17 层 DCNN(根尖片解释系统与自注意力网络[PRESSAN-17]),并对模型进行了训练、验证和测试,以 1)检测 7 个临床特征,即全冠修复、邻牙存在、冠部缺损、根分歧、根管可视性、既往根管充填和根尖透光区,以及 2)通过分析术前根尖片作为输入来预测三年的根管预后。在预后测试中,测试了一个没有自注意力层的传统 DCNN(残差神经网络[RESNET]-18)进行比较。主要评估准确性和受试者工作特征曲线下面积以进行性能比较。使用梯度加权类激活映射可视化加权热图。

结果

与无信息率相比,PRESSAN-17 显著检测到全冠修复(受试者工作特征曲线下面积=0.975)、邻牙存在(0.866)、冠部缺损(0.672)、根分歧(0.989)、既往根管充填(0.879)和根尖透光区(0.690)(P<0.05)。比较两个模型的 5 倍验证的平均准确性,PRESSAN-17(67.0%)与 RESNET-18(63.4%)有显著差异(P<0.05)。此外,PRESSAN-17 的平均受试者工作特征曲线下面积为 0.638,与无信息率有显著差异。梯度加权类激活映射表明,PRESSAN-17 正确地识别了临床特征。

结论

深度卷积神经网络可以准确地检测根尖片中的几个临床特征。基于我们的发现,发达的人工智能可以为牙医提供与根管治疗相关的临床决策支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验