Suppr超能文献

在全景片上检测分离的根管器械:LSTM 和 CNN 深度学习方法的比较。

Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods.

机构信息

Department of Dentomaxillofacial Radiology, Istanbul Okan University, Faculty of Dentistry, İstanbul, Turkey.

Department of Endodontics, Bahcesehir University, Faculty of Dentistry, İstanbul, Turkey.

出版信息

Dentomaxillofac Radiol. 2023 Feb;52(3):20220209. doi: 10.1259/dmfr.20220209. Epub 2023 Jan 25.

Abstract

OBJECTIVES

A separated endodontic instrument is one of the challenging complications of root canal treatment. The purpose of this study was to compare two deep learning methods that are convolutional neural network (CNN) and long short-term memory (LSTM) to detect the separated endodontic instruments on dental radiographs.

METHODS

Panoramic radiographs from the hospital archive were retrospectively evaluated by two dentists. A total of 915 teeth, of which 417 are labeled as "separated instrument" and 498 are labeled as "healthy root canal treatment" were included. A total of six deep learning models, four of which are some varieties of CNN (Raw-CNN, Augmented-CNN, Gabor filtered-CNN, Gabor-filtered-augmented-CNN) and two of which are some varieties of LSTM model (Raw-LSTM, Augmented-LSTM) were trained based on several feature extraction methods with an applied or not applied an augmentation procedure. The diagnostic performances of the models were compared in terms of accuracy, sensitivity, specificity, positive- and negative-predictive value using 10-fold cross-validation. A McNemar's tests was employed to figure out if there is a statistically significant difference between performances of the models. Receiver operating characteristic (ROC) curves were developed to assess the quality of the performance of the most promising model (Gabor filtered-CNN model) by exploring different cut-off levels in the last decision layer of the model.

RESULTS

The Gabor filtered-CNN model showed the highest accuracy (84.37 ± 2.79), sensitivity (81.26 ± 4.79), positive-predictive value (84.16 ± 3.35) and negative-predictive value (84.62 ± 4.56 with a confidence interval of 80.6 ± 0.0076. McNemar's tests yielded that the performance of the Gabor filtered-CNN model significantly different from both LSTM models ( < 0.01).

CONCLUSIONS

Both CNN and LSTM models were achieved a high predictive performance on to distinguish separated endodontic instruments in radiographs. The Gabor filtered-CNN model without data augmentation gave the best predictive performance.

摘要

目的

根管治疗中分离的根管器械是一项具有挑战性的并发症。本研究旨在比较两种深度学习方法,即卷积神经网络(CNN)和长短时记忆(LSTM),以检测牙片上分离的根管器械。

方法

两位牙医回顾性评估了医院档案中的全景片。共纳入 915 颗牙齿,其中 417 颗标记为“分离器械”,498 颗标记为“健康根管治疗”。基于几种特征提取方法,共训练了 6 种深度学习模型,其中 4 种为 CNN 的不同变体(Raw-CNN、Augmented-CNN、Gabor 滤波-CNN、Gabor-filtered-augmented-CNN),2 种为 LSTM 模型的不同变体(Raw-LSTM、Augmented-LSTM),并应用或不应用增强程序。通过 10 折交叉验证,比较了模型在准确性、敏感性、特异性、阳性预测值和阴性预测值方面的诊断性能。采用 McNemar 检验来确定模型性能之间是否存在统计学显著差异。绘制受试者工作特征(ROC)曲线,通过探索模型最后决策层的不同截断水平,评估最有前途的模型(Gabor 滤波-CNN 模型)的性能质量。

结果

Gabor 滤波-CNN 模型表现出最高的准确性(84.37±2.79)、敏感性(81.26±4.79)、阳性预测值(84.16±3.35)和阴性预测值(84.62±4.56,置信区间为 80.6±0.0076)。McNemar 检验表明,Gabor 滤波-CNN 模型的性能与两种 LSTM 模型均有显著差异(<0.01)。

结论

CNN 和 LSTM 模型在区分牙片上分离的根管器械方面均具有较高的预测性能。未经数据增强的 Gabor 滤波-CNN 模型具有最佳的预测性能。

相似文献

1
Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods.
Dentomaxillofac Radiol. 2023 Feb;52(3):20220209. doi: 10.1259/dmfr.20220209. Epub 2023 Jan 25.
3
Deep-learning for predicting C-shaped canals in mandibular second molars on panoramic radiographs.
Dentomaxillofac Radiol. 2021 Jul 1;50(5):20200513. doi: 10.1259/dmfr.20200513. Epub 2021 Jan 6.
4
Developing deep learning methods for classification of teeth in dental panoramic radiography.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2024 Jul;138(1):118-127. doi: 10.1016/j.oooo.2023.02.021. Epub 2023 Mar 30.
5
Quantitative level determination of fixed restorations on panoramic radiographs using deep learning.
Int J Comput Dent. 2023 Nov 28;26(4):285-299. doi: 10.3290/j.ijcd.b3840521.
6
[Application of Deep Learning in Differential Diagnosis of Ameloblastoma and Odontogenic Keratocyst Based on Panoramic Radiographs].
Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2023 Apr;45(2):273-279. doi: 10.3881/j.issn.1000-503X.15139.
7
Development of an Artificial Intelligence Model to Identify a Dental Implant from a Radiograph.
Int J Oral Maxillofac Implants. 2020 Nov/Dec;36(6):1077-1082. doi: 10.11607/jomi.8060.
9
Computer-aided COVID-19 diagnosis and a comparison of deep learners using augmented CXRs.
J Xray Sci Technol. 2022;30(1):89-109. doi: 10.3233/XST-211047.
10
Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs.
Int J Oral Maxillofac Surg. 2022 Nov;51(11):1488-1494. doi: 10.1016/j.ijom.2022.03.056. Epub 2022 Apr 6.

引用本文的文献

1
2
Expert consensus on management of instrument separation in root canal therapy.
Int J Oral Sci. 2025 Jun 9;17(1):46. doi: 10.1038/s41368-025-00372-w.
4
Deep learning algorithms for detecting fractured instruments in root canals.
BMC Oral Health. 2025 Feb 23;25(1):293. doi: 10.1186/s12903-025-05652-9.
7
Estimating the Severity of Oral Lesions Via Analysis of Cone Beam Computed Tomography Reports: A Proposed Deep Learning Model.
Int Dent J. 2025 Feb;75(1):135-143. doi: 10.1016/j.identj.2024.06.015. Epub 2024 Jul 26.
8
Artificial Intelligence in Endodontics: A Scoping Review.
Iran Endod J. 2024;19(2):85-98. doi: 10.22037/iej.v19i2.44842.

本文引用的文献

1
Critical Analysis of Artificial Intelligence in Endodontics: A Scoping Review.
J Endod. 2022 Feb;48(2):152-160. doi: 10.1016/j.joen.2021.11.007. Epub 2021 Nov 25.
2
A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images.
Inform Med Unlocked. 2020;20:100412. doi: 10.1016/j.imu.2020.100412. Epub 2020 Aug 15.
3
Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography.
Oral Radiol. 2020 Oct;36(4):337-343. doi: 10.1007/s11282-019-00409-x. Epub 2019 Sep 18.
4
The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review.
Dentomaxillofac Radiol. 2020 Jan;49(1):20190107. doi: 10.1259/dmfr.20190107. Epub 2019 Aug 14.
5
Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2019 Oct;128(4):424-430. doi: 10.1016/j.oooo.2019.05.014. Epub 2019 Jun 6.
6
An overview of deep learning in the field of dentistry.
Imaging Sci Dent. 2019 Mar;49(1):1-7. doi: 10.5624/isd.2019.49.1.1. Epub 2019 Mar 25.
7
Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods.
AJR Am J Roentgenol. 2019 Jan;212(1):38-43. doi: 10.2214/AJR.18.20224. Epub 2018 Oct 17.
9
Failure of endodontic treatment: The usual suspects.
Eur J Dent. 2016 Jan-Mar;10(1):144-147. doi: 10.4103/1305-7456.175682.
10
Radiographic identification of separated instruments retained in the apical third of root canal-filled teeth.
J Endod. 2014 Oct;40(10):1549-52. doi: 10.1016/j.joen.2014.07.005. Epub 2014 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验