Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802.
Biointerphases. 2023 Apr 5;18(2):021004. doi: 10.1116/6.0002440.
Fibril curvature is bioinstructive to attached cells. Similar to natural healthy tissues, an engineered extracellular matrix can be designed to stimulate cells to adopt desired phenotypes. To take full advantage of the curvature control in biomaterial fabrication methodologies, an understanding of the response to fibril subcellular curvature is required. In this work, we examined morphology, signaling, and function of human cells attached to electrospun nanofibers. We controlled curvature across an order of magnitude using nondegradable poly(methyl methacrylate) (PMMA) attached to a stiff substrate with flat PMMA as a control. Focal adhesion length and the distance of maximum intensity from the geographic center of the vinculin positive focal adhesion both peaked at a fiber curvature of 2.5 μm (both ∼2× the flat surface control). Vinculin experienced slightly less tension when attached to nanofiber substrates. Vinculin expression was also more affected by a subcellular curvature than structural proteins α-tubulin or α-actinin. Among the phosphorylation sites we examined (FAK397, 576/577, 925, and Src416), FAK925 exhibited the most dependance on the nanofiber curvature. A RhoA/ROCK dependance of migration velocity across curvatures combined with an observation of cell membrane wrapping around nanofibers suggested a hybrid of migration modes for cells attached to fibers as has been observed in 3D matrices. Careful selection of nanofiber curvature for regenerative engineering scaffolds and substrates used to study cell biology is required to maximize the potential of these techniques for scientific exploration and ultimately improvement of human health.
纤维曲率对附着的细胞具有生物指导作用。类似于天然健康组织,可以设计工程细胞外基质来刺激细胞采用所需的表型。为了充分利用生物材料制造方法中的曲率控制,需要了解细胞对纤维亚细胞曲率的响应。在这项工作中,我们研究了附着在静电纺纳米纤维上的人细胞的形态、信号和功能。我们使用附着在刚性基底上的不可降解聚甲基丙烯酸甲酯 (PMMA) 控制曲率,跨越一个数量级,以具有平坦 PMMA 的基底作为对照。粘着斑长度和最大强度距离地理中心的粘着斑 vinculin 的距离都在纤维曲率为 2.5μm 时达到峰值(均比平坦表面对照高 2 倍)。当附着在纳米纤维基底上时,vinculin 的张力稍小。vinculin 的表达也比结构蛋白α-微管蛋白或α-辅肌动蛋白更容易受到亚细胞曲率的影响。在我们研究的磷酸化位点(FAK397、576/577、925 和 Src416)中,FAK925 对纳米纤维曲率的依赖性最强。我们观察到 RhoA/ROCK 对曲率上迁移速度的依赖性,以及细胞膜包裹纳米纤维的现象,这表明与在 3D 基质中观察到的一样,附着在纤维上的细胞的迁移模式是混合的。为了最大限度地发挥这些技术在科学探索中的潜力,并最终改善人类健康,需要仔细选择用于再生工程支架和研究细胞生物学的基底的纳米纤维曲率。