Electrical Department, IIT Madras, Chennai, India.
Mechanical Department, Clemson University, Clemson, USA.
Sci Rep. 2023 Apr 5;13(1):5588. doi: 10.1038/s41598-023-32762-7.
Information flow among nodes in a complex network describes the overall cause-effect relationships among the nodes and provides a better understanding of the contributions of these nodes individually or collectively towards the underlying network dynamics. Variations in network topologies result in varying information flows among nodes. We integrate theories from information science with control network theory into a framework that enables us to quantify and control the information flows among the nodes in a complex network. The framework explicates the relationships between the network topology and the functional patterns, such as the information transfers in biological networks, information rerouting in sensor nodes, and influence patterns in social networks. We show that by designing or re-configuring the network topology, we can optimize the information transfer function between two chosen nodes. As a proof of concept, we apply our proposed methods in the context of brain networks, where we reconfigure neural circuits to optimize excitation levels among the excitatory neurons.
在复杂网络中的节点之间的信息流描述了节点之间的整体因果关系,并提供了对这些节点单独或集体对底层网络动态的贡献的更好理解。网络拓扑结构的变化导致节点之间的信息流发生变化。我们将信息科学理论与控制网络理论相结合,构建了一个框架,使我们能够量化和控制复杂网络中节点之间的信息流。该框架阐明了网络拓扑结构与功能模式之间的关系,例如生物网络中的信息传递、传感器节点中的信息重路由以及社交网络中的影响模式。我们表明,通过设计或重新配置网络拓扑结构,我们可以优化两个选定节点之间的信息传递功能。作为概念验证,我们在脑网络的上下文中应用了我们提出的方法,在该方法中,我们重新配置神经回路以优化兴奋性神经元之间的兴奋水平。