Suppr超能文献

利用非线性格兰杰因果关系方法识别脉冲神经元网络的结构。

Identifying the pulsed neuron networks' structures by a nonlinear Granger causality method.

机构信息

School of Electric Power, Inner Mongolia University of Technology, Hohhot, 010080, China.

Inner Mongolia Key Laboratory of Mechanical and Electrical Control, Hohhot, 010051, China.

出版信息

BMC Neurosci. 2020 Feb 12;21(1):7. doi: 10.1186/s12868-020-0555-z.

Abstract

BACKGROUND

It is a crucial task of brain science researches to explore functional connective maps of Biological Neural Networks (BNN). The maps help to deeply study the dominant relationship between the structures of the BNNs and their network functions.

RESULTS

In this study, the ideas of linear Granger causality modeling and causality identification are extended to those of nonlinear Granger causality modeling and network structure identification. We employed Radial Basis Functions to fit the nonlinear multivariate dynamical responses of BNNs with neuronal pulse firing. By introducing the contributions from presynaptic neurons and detecting whether the predictions for postsynaptic neurons' pulse firing signals are improved or not, we can reveal the information flows distribution of BNNs. Thus, the functional connections from presynaptic neurons can be identified from the obtained network information flows. To verify the effectiveness of the proposed method, the Nonlinear Granger Causality Identification Method (NGCIM) is applied to the network structure discovery processes of Spiking Neural Networks (SNN). SNN is a simulation model based on an Integrate-and-Fire mechanism. By network simulations, the multi-channel neuronal pulse sequence data of the SNNs can be used to reversely identify the synaptic connections and strengths of the SNNs.

CONCLUSIONS

The identification results show: for 2-6 nodes small-scale neural networks, 20 nodes medium-scale neural networks, and 100 nodes large-scale neural networks, the identification accuracy of NGCIM with the Gaussian kernel function was 100%, 99.64%, 98.64%, 98.37%, 98.31%, 84.87% and 80.56%, respectively. The identification accuracies were significantly higher than those of a traditional Linear Granger Causality Identification Method with the same network sizes. Thus, with an accumulation of the data obtained by the existing measurement methods, such as Electroencephalography, functional Magnetic Resonance Imaging, and Multi-Electrode Array, the NGCIM can be a promising network modeling method to infer the functional connective maps of BNNs.

摘要

背景

探索生物神经网络(BNN)的功能连接图谱是脑科学研究的关键任务。这些图谱有助于深入研究 BNN 的结构与其网络功能之间的主导关系。

结果

在这项研究中,线性格兰杰因果建模和因果识别的思想被扩展到非线性格兰杰因果建模和网络结构识别。我们采用径向基函数拟合 BNN 的神经元脉冲发射的非线性多变量动力响应。通过引入来自突触前神经元的贡献,并检测对突触后神经元脉冲发射信号的预测是否得到改善,我们可以揭示 BNN 的信息流分布。因此,可以从获得的网络信息流中识别出来自突触前神经元的功能连接。为了验证所提出方法的有效性,将非线性格兰杰因果识别方法(NGCIM)应用于尖峰神经网络(SNN)的网络结构发现过程。SNN 是基于积分-点火机制的仿真模型。通过网络仿真,可以使用 SNN 的多通道神经元脉冲序列数据来反向识别 SNN 的突触连接和强度。

结论

识别结果表明:对于 2-6 个节点的小规模神经网络、20 个节点的中等规模神经网络和 100 个节点的大规模神经网络,具有高斯核函数的 NGCIM 的识别准确率分别为 100%、99.64%、98.64%、98.37%、98.31%、84.87%和 80.56%。识别准确率明显高于具有相同网络大小的传统线性格兰杰因果识别方法的识别准确率。因此,随着现有测量方法(如脑电图、功能磁共振成像和多电极阵列)获得的数据的积累,NGCIM 可以成为一种很有前途的网络建模方法,用于推断 BNN 的功能连接图谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a79/7017568/60a48af6c943/12868_2020_555_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验