Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
BMC Biotechnol. 2023 Apr 5;23(1):11. doi: 10.1186/s12896-023-00779-5.
Some peptides are targets for degradation when heterologously expressed as fusion proteins in E. coli, which can limit yields after isolation and purification. We recently reported that peptide degradation may be prevented by production of a "sandwiched" SUMO-peptide-intein (SPI) fusion protein, which protects the target peptide sequence from truncation and improves yield. This initial system required cloning with two commercially available vectors. It used an N-terminal polyhistidine tagged small ubiquitin-like modifier (SUMO) protein and a C-terminal engineered Mycobacterium xenopii DNA Gyrase A intein with an inserted chitin binding domain (CBD) to create "sandwiched" fusion proteins of the form: His-SUMO-peptide-intein-CBD. However, the major drawback of this previously reported fusion protein "sandwich" approach is the increased time and number of steps required to complete the cloning and isolation procedures, relative to the simple procedures to produce recombinant peptides in E. coli from a single (non-"sandwiched") fusion protein system.
In this work we generate the plasmid pSPIH6, which improves upon the previous system by encoding both the SUMO and intein proteins and allows facile construction of a SPI protein in a single cloning step. Additionally, the Mxe GyrA intein encoded in pSPIH6 contains a C-terminal polyhistidine tag, resulting in SPI fusion proteins of the form: His-SUMO-peptide-intein-CBD-His. The dual polyhistidine tags greatly simplify isolation procedures compared to the original SPI system, which we have here demonstrated with two linear bacteriocin peptides: leucocin A and lactococcin A. The yields obtained for both peptides after purification were also improved compared to the previous SPI system as a result of this streamlined protocol.
This modified SPI system and its simplified cloning and purification procedures described here may be generally useful as a heterologous E. coli expression system to obtain pure peptides in high yield, especially when degradation of the target peptide is an issue.
当异源表达为大肠杆菌中的融合蛋白时,一些肽会成为降解的目标,这会限制分离和纯化后的产量。我们最近报道,通过生产“夹合”的 SUMO-肽-内含肽(SPI)融合蛋白,可以防止肽降解,从而提高产量。这个初始系统需要使用两个市售载体进行克隆。它使用 N 端聚组氨酸标记的小泛素样修饰物(SUMO)蛋白和 C 端工程化的 Xenopii 分枝杆菌 DNA 拓扑异构酶 A 内含肽,插入一个几丁质结合域(CBD),以创建形式为 His-SUMO-peptide-intein-CBD 的“夹合”融合蛋白。然而,这种以前报道的融合蛋白“夹合”方法的主要缺点是与从单个(非“夹合”)融合蛋白系统在大肠杆菌中生产重组肽相比,完成克隆和分离程序所需的时间和步骤数量增加。
在这项工作中,我们生成了质粒 pSPIH6,该质粒通过编码 SUMO 和内含肽蛋白,改进了以前的系统,并允许在单个克隆步骤中方便地构建 SPI 蛋白。此外,pSPIH6 中编码的 Mxe GyrA 内含肽包含 C 端聚组氨酸标签,导致 SPI 融合蛋白的形式为:His-SUMO-peptide-intein-CBD-His。与原始 SPI 系统相比,双聚组氨酸标签极大地简化了分离程序,我们已经用两种线性细菌素肽:亮白菌素 A 和乳球菌素 A 证明了这一点。由于该简化方案,与以前的 SPI 系统相比,两种肽纯化后的产量也得到了提高。
这种改良的 SPI 系统及其简化的克隆和纯化程序可能作为一种异源大肠杆菌表达系统,用于以高产率获得纯肽,特别是当目标肽降解是一个问题时。