Khasanshina Z R, Kornakov I A, Buslaeva E A, Drai R V
Pharm-Holding (RnD GEROPHARM), St. Petersburg, P. Strelna 34-A Svyazi Street, 198515, Russia.
ITMO University, St. Petersburg, 197101, Russia.
Folia Microbiol (Praha). 2025 Apr 26. doi: 10.1007/s12223-025-01265-5.
The production of recombinant peptides is critical in biotechnology and medicine for treating a variety of diseases. Thus, there is an urgent need for the development of quick, scalable, and cost-effective recombinant protein expression strategies. This study optimizes induction conditions for an insulin precursor, an analog GLP-1 precursor, and a peptide for COVID-19 therapy expression in E. coli using the response surface method. Factors such as pH, temperature, induction time, isopropyl-β-D-thiogalactopyranoside concentration, and optical density significantly influence peptide productivity. Experimental validation supports the effectiveness of these models in predicting peptide yields under optimal conditions. The optimal induction conditions were determined as follows: temperature at 37 °C, pH of the medium 7.0-8.0, induction at the early logarithmic phase of growth, isopropyl-β-D-thiogalactopyranoside concentration of 0.05 mM, and induction time of 6 h. After model validation, the productivity of each peptide producer exceeded 3 g/L. The optimal conditions achieved peptide titers significantly higher than those previously reported, suggesting that this technique is a versatile cultivation technology for the efficient production of different recombinant peptides. In conclusion, our research enhances the understanding of how tailored cultivation conditions can optimize recombinant peptide production efficiency.
重组肽的生产在生物技术和医学中对于治疗多种疾病至关重要。因此,迫切需要开发快速、可扩展且具有成本效益的重组蛋白表达策略。本研究使用响应面法优化了胰岛素前体、类似物GLP-1前体以及用于COVID-19治疗的肽在大肠杆菌中的诱导条件。诸如pH、温度、诱导时间、异丙基-β-D-硫代半乳糖苷浓度和光密度等因素会显著影响肽的产量。实验验证支持了这些模型在预测最佳条件下肽产量方面的有效性。确定的最佳诱导条件如下:温度为37°C,培养基pH为7.0 - 8.0,在生长的对数早期进行诱导,异丙基-β-D-硫代半乳糖苷浓度为0.05 mM,诱导时间为6小时。经过模型验证后,每种肽产生菌的产量均超过3 g/L。这些最佳条件实现的肽滴度显著高于先前报道的水平,表明该技术是一种用于高效生产不同重组肽的通用培养技术。总之,我们的研究增进了对如何通过定制培养条件优化重组肽生产效率的理解。