Pipiya Sofiya O, Kudzhaev Arsen M, Mirzoeva Nisso Z, Mokrushina Yuliana A, Ziganshin Rustam H, Komlev Alexey S, Petrova Polina E, Smirnov Ivan V, Gabibov Alexander G, Shamova Olga V, Terekhov Stanislav S
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
Institute of Experimental Medicine, WCRC "Center for Personalized Medicine", Saint-Petersburg 197022, Russia.
Antibiotics (Basel). 2023 Dec 12;12(12):1719. doi: 10.3390/antibiotics12121719.
The global spread of antibiotic resistance marks the end of the era of conventional antibiotics. Mankind desires new molecular tools to fight pathogenic bacteria. In this regard, the development of new antimicrobials based on antimicrobial peptides (AMPs) is again of particular interest. AMPs have various mechanisms of action on bacterial cells. Moreover, AMPs have been reported to be efficient in preclinical studies, demonstrating a low level of resistance formation. Thanatin is a small, beta-hairpin antimicrobial peptide with a bacterial-specific mode of action, predetermining its low cytotoxicity toward eukaryotic cells. This makes thanatin an exceptional candidate for new antibiotic development. Here, a microorganism was bioengineered to produce an antimicrobial agent, providing novel opportunities in antibiotic research through the directed creation of biocontrol agents. The constitutive heterologous production of recombinant thanatin (rThan) in the yeast endows the latter with antibacterial properties. Optimized expression and purification conditions enable a high production level, yielding up to 20 mg/L of rThan from the culture medium. rThan shows a wide spectrum of activity against pathogenic bacteria, similarly to its chemically synthesized analogue. The designed approach provides new avenues for AMP engineering and creating live biocontrol agents to fight antibiotic resistance.
抗生素耐药性的全球传播标志着传统抗生素时代的终结。人类渴望获得新的分子工具来对抗病原菌。在这方面,基于抗菌肽(AMPs)开发新型抗菌药物再次引起了特别关注。AMPs对细菌细胞具有多种作用机制。此外,据报道AMPs在临床前研究中效果显著,显示出较低的耐药性形成水平。Thanatin是一种小型β-发夹抗菌肽,具有细菌特异性作用模式,这决定了其对真核细胞的低细胞毒性。这使得thanatin成为新型抗生素开发的理想候选物。在此,通过对微生物进行生物工程改造以生产抗菌剂,通过定向创建生物控制剂为抗生素研究提供了新机遇。在酵母中组成型异源生产重组thanatin(rThan)赋予了酵母抗菌特性。优化的表达和纯化条件能够实现高产量,从培养基中可产生高达20 mg/L的rThan。rThan对病原菌显示出广泛的活性,与其化学合成类似物相似。所设计的方法为AMPs工程改造以及创建对抗抗生素耐药性的活体生物控制剂提供了新途径。