Yang Yuqun, Tang Xu, Cheung Yiu-Ming, Zhang Xiangrong, Jiao Licheng
IEEE Trans Image Process. 2023;32:1011-1025. doi: 10.1109/TIP.2023.3238310. Epub 2023 Jan 31.
The scene classification of remote sensing (RS) images plays an essential role in the RS community, aiming to assign the semantics to different RS scenes. With the increase of spatial resolution of RS images, high-resolution RS (HRRS) image scene classification becomes a challenging task because the contents within HRRS images are diverse in type, various in scale, and massive in volume. Recently, deep convolution neural networks (DCNNs) provide the promising results of the HRRS scene classification. Most of them regard HRRS scene classification tasks as single-label problems. In this way, the semantics represented by the manual annotation decide the final classification results directly. Although it is feasible, the various semantics hidden in HRRS images are ignored, thus resulting in inaccurate decision. To overcome this limitation, we propose a semantic-aware graph network (SAGN) for HRRS images. SAGN consists of a dense feature pyramid network (DFPN), an adaptive semantic analysis module (ASAM), a dynamic graph feature update module, and a scene decision module (SDM). Their function is to extract the multi-scale information, mine the various semantics, exploit the unstructured relations between diverse semantics, and make the decision for HRRS scenes, respectively. Instead of transforming single-label problems into multi-label issues, our SAGN elaborates the proper methods to make full use of diverse semantics hidden in HRRS images to accomplish scene classification tasks. The extensive experiments are conducted on three popular HRRS scene data sets. Experimental results show the effectiveness of the proposed SAGN. Our source codes are available at https://github.com/TangXu-Group/SAGN.
遥感(RS)图像的场景分类在遥感领域起着至关重要的作用,旨在为不同的遥感场景赋予语义。随着遥感图像空间分辨率的提高,高分辨率遥感(HRRS)图像场景分类成为一项具有挑战性的任务,因为HRRS图像中的内容类型多样、尺度各异且数量庞大。近年来,深度卷积神经网络(DCNNs)在HRRS场景分类中取得了有前景的成果。其中大多数将HRRS场景分类任务视为单标签问题。通过这种方式,手动标注所代表的语义直接决定最终的分类结果。虽然这是可行的,但HRRS图像中隐藏的各种语义被忽略了,从而导致决策不准确。为了克服这一局限性,我们提出了一种用于HRRS图像的语义感知图网络(SAGN)。SAGN由一个密集特征金字塔网络(DFPN)、一个自适应语义分析模块(ASAM)、一个动态图特征更新模块和一个场景决策模块(SDM)组成。它们的功能分别是提取多尺度信息、挖掘各种语义、利用不同语义之间的非结构化关系以及对HRRS场景进行决策。我们的SAGN没有将单标签问题转化为多标签问题,而是阐述了充分利用HRRS图像中隐藏的各种语义来完成场景分类任务的恰当方法。我们在三个流行的HRRS场景数据集上进行了广泛的实验。实验结果表明了所提出的SAGN的有效性。我们的源代码可在https://github.com/TangXu-Group/SAGN获取。