Suppr超能文献

基于图卷积网络驱动的深度特征聚合框架用于遥感场景分类

Deep Feature Aggregation Framework Driven by Graph Convolutional Network for Scene Classification in Remote Sensing.

作者信息

Xu Kejie, Huang Hong, Deng Peifang, Li Yuan

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Oct;33(10):5751-5765. doi: 10.1109/TNNLS.2021.3071369. Epub 2022 Oct 5.

Abstract

Scene classification of high spatial resolution (HSR) images can provide data support for many practical applications, such as land planning and utilization, and it has been a crucial research topic in the remote sensing (RS) community. Recently, deep learning methods driven by massive data show the impressive ability of feature learning in the field of HSR scene classification, especially convolutional neural networks (CNNs). Although traditional CNNs achieve good classification results, it is difficult for them to effectively capture potential context relationships. The graphs have powerful capacity to represent the relevance of data, and graph-based deep learning methods can spontaneously learn intrinsic attributes contained in RS images. Inspired by the abovementioned facts, we develop a deep feature aggregation framework driven by graph convolutional network (DFAGCN) for the HSR scene classification. First, the off-the-shelf CNN pretrained on ImageNet is employed to obtain multilayer features. Second, a graph convolutional network-based model is introduced to effectively reveal patch-to-patch correlations of convolutional feature maps, and more refined features can be harvested. Finally, a weighted concatenation method is adopted to integrate multiple features (i.e., multilayer convolutional features and fully connected features) by introducing three weighting coefficients, and then a linear classifier is employed to predict semantic classes of query images. Experimental results performed on the UCM, AID, RSSCN7, and NWPU-RESISC45 data sets demonstrate that the proposed DFAGCN framework obtains more competitive performance than some state-of-the-art methods of scene classification in terms of OAs.

摘要

高空间分辨率(HSR)图像的场景分类可为土地规划与利用等诸多实际应用提供数据支持,一直是遥感(RS)领域的关键研究课题。近年来,由海量数据驱动的深度学习方法在HSR场景分类领域展现出强大的特征学习能力,尤其是卷积神经网络(CNN)。尽管传统CNN取得了良好的分类结果,但它们难以有效捕捉潜在的上下文关系。图具有强大的数据相关性表示能力,基于图的深度学习方法能够自动学习RS图像中蕴含的内在属性。受上述事实启发,我们开发了一种基于图卷积网络驱动的深度特征聚合框架(DFAGCN)用于HSR场景分类。首先,使用在ImageNet上预训练的现成CNN获取多层特征。其次,引入基于图卷积网络的模型来有效揭示卷积特征图的块间相关性,并收获更精细的特征。最后,采用加权连接方法通过引入三个加权系数来整合多个特征(即多层卷积特征和全连接特征),然后使用线性分类器预测查询图像的语义类别。在UCM、AID、RSSCN7和NWPU-RESISC45数据集上进行的实验结果表明,所提出的DFAGCN框架在总体精度(OAs)方面比一些最先进的场景分类方法具有更具竞争力的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验