Suppr超能文献

基于残差多样分支块的深度软池胶囊网络的场景识别。

Scene Recognition Using Deep Softpool Capsule Network Based on Residual Diverse Branch Block.

机构信息

School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.

Shanghai Institute of Satellite Engineering, Shanghai 200240, China.

出版信息

Sensors (Basel). 2021 Aug 19;21(16):5575. doi: 10.3390/s21165575.

Abstract

With the improvement of the quality and resolution of remote sensing (RS) images, scene recognition tasks have played an important role in the RS community. However, due to the special bird's eye view image acquisition mode of imaging sensors, it is still challenging to construct a discriminate representation of diverse and complex scenes to improve RS image recognition performance. Capsule networks that can learn the spatial relationship between the features in an image has a good image classification performance. However, the original capsule network is not suitable for images with a complex background. To address the above issues, this paper proposes a novel end-to-end capsule network termed DS-CapsNet, in which a new multi-scale feature enhancement module and a new Caps-SoftPool method are advanced by aggregating the advantageous attributes of the residual convolution architecture, Diverse Branch Block (DBB), Squeeze and Excitation (SE) block, and the Caps-SoftPool method. By using the residual DBB, multiscale features can be extracted and fused to recover a semantic strong feature representation. By adopting SE, the informative features are emphasized, and the less salient features are weakened. The new Caps-SoftPool method can reduce the number of parameters that are needed in order to prevent an over-fitting problem. The novel DS-CapsNet achieves a competitive and promising performance for RS image recognition by using high-quality and robust capsule representation. The extensive experiments on two challenging datasets, AID and NWPU-RESISC45, demonstrate the robustness and superiority of the proposed DS-CapsNet in scene recognition tasks.

摘要

随着遥感 (RS) 图像质量和分辨率的提高,场景识别任务在 RS 社区中发挥了重要作用。然而,由于成像传感器的特殊俯视图像采集模式,构建多样化和复杂场景的有区别表示以提高 RS 图像识别性能仍然具有挑战性。胶囊网络可以学习图像中特征之间的空间关系,具有很好的图像分类性能。然而,原始的胶囊网络不适合具有复杂背景的图像。针对上述问题,本文提出了一种新颖的端到端胶囊网络 DS-CapsNet,该网络通过聚合残差卷积架构、多分支模块 (DBB)、压缩激励 (SE) 模块和胶囊软池方法的优势属性,提出了一种新的多尺度特征增强模块和一种新的胶囊软池方法。通过使用残差 DBB,可以提取和融合多尺度特征,以恢复语义强特征表示。通过采用 SE,可以强调信息特征,弱化不太显著的特征。新的胶囊软池方法可以减少所需的参数数量,以防止过拟合问题。通过使用高质量和稳健的胶囊表示,新颖的 DS-CapsNet 在 RS 图像识别方面取得了有竞争力和有前景的性能。在两个具有挑战性的数据集 AID 和 NWPU-RESISC45 上的广泛实验表明了所提出的 DS-CapsNet 在场景识别任务中的稳健性和优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dc/8402264/8c5faa506de6/sensors-21-05575-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验