IEEE Trans Med Imaging. 2023 Jun;42(6):1835-1845. doi: 10.1109/TMI.2023.3240847. Epub 2023 Jun 1.
In this study, we proposed a computer-aided diagnosis (CADx) framework under dual-energy spectral CT (DECT), which operates directly on the transmission data in the pre-log domain, called CADxDE, to explore the spectral information for lesion diagnosis. The CADxDE includes material identification and machine learning (ML) based CADx. Benefits from DECT's capability of performing virtual monoenergetic imaging with the identified materials, the responses of different tissue types (e.g., muscle, water, and fat) in lesions at each energy can be explored by ML for CADx. Without losing essential factors in the DECT scan, a pre-log domain model-based iterative reconstruction is adopted to obtain decomposed material images, which are then used to generate the virtual monoenergetic images (VMIs) at selected n energies. While these VMIs have the same anatomy, their contrast distribution patterns contain rich information along with the n energies for tissue characterization. Thus, a corresponding ML-based CADx is developed to exploit the energy-enhanced tissue features for differentiating malignant from benign lesions. Specifically, an original image-driven multi-channel three-dimensional convolutional neural network (CNN) and extracted lesion feature-based ML CADx methods are developed to show the feasibility of CADxDE. Results from three pathologically proven clinical datasets showed 4.01% to 14.25% higher AUC (area under the receiver operating characteristic curve) scores than the scores of both the conventional DECT data (high and low energy spectrum separately) and the conventional CT data. The mean gain >9.13% in AUC scores indicated that the energy spectral-enhanced tissue features from CADxDE have great potential to improve lesion diagnosis performance.
在这项研究中,我们提出了一种基于双能谱 CT(DECT)的计算机辅助诊断(CADx)框架,该框架直接在预对数域中的透射数据上运行,称为 CADxDE,以探索用于病变诊断的光谱信息。CADxDE 包括物质识别和基于机器学习(ML)的 CADx。得益于 DECT 用已识别物质进行虚拟单能量成像的能力,可以通过 ML 探索病变中不同组织类型(例如肌肉、水和脂肪)在每个能量下的反应,以进行 CADx。在不丢失 DECT 扫描中基本因素的情况下,采用基于预对数域模型的迭代重建来获得分解的物质图像,然后使用这些图像生成在选定 n 个能量下的虚拟单能量图像(VMIs)。虽然这些 VMIs 具有相同的解剖结构,但它们的对比度分布模式包含了与 n 个能量相关的丰富信息,可用于组织特征描述。因此,开发了相应的基于 ML 的 CADx 以利用增强的能量组织特征来区分恶性和良性病变。具体来说,开发了原始图像驱动的多通道三维卷积神经网络(CNN)和基于提取病变特征的 ML CADx 方法,以展示 CADxDE 的可行性。来自三个经病理证实的临床数据集的结果显示,与常规 DECT 数据(高低能谱分别)和常规 CT 数据相比,AUC(接收器工作特征曲线下的面积)得分分别高 4.01%至 14.25%。AUC 得分的平均增益>9.13%表明,CADxDE 中来自能量谱的增强组织特征具有极大的潜力来提高病变诊断性能。