Zhu Yanzheng, Wang Zuo, Liang Hongjing, Ahn Choon Ki
IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):9995-10005. doi: 10.1109/TNNLS.2023.3238336. Epub 2024 Jul 8.
A predefined-time adaptive consensus control strategy is developed for a class of multi-agent systems containing unknown nonlinearity. The unknown dynamics and switching topologies are simultaneously considered to adapt to actual scenarios. The time required for tracking error convergence can be easily adjusted using the proposed time-varying decay functions. An efficient method is proposed to determine the expected convergence time. Subsequently, the predefined time is adjustable by regulating the parameters of the time-varying functions (TVFs). The neural network (NN) approximation technique is used to address the issue of unknown nonlinear dynamics through predefined-time consensus control. The Lyapunov stability theory testifies that the predefined-time tracking error signals are bounded and convergent. The feasibility and effectiveness of the proposed predefined-time consensus control scheme are demonstrated through the simulation results.
针对一类包含未知非线性的多智能体系统,开发了一种预定义时间自适应一致性控制策略。同时考虑未知动态和切换拓扑以适应实际场景。使用所提出的时变衰减函数可以轻松调整跟踪误差收敛所需的时间。提出了一种有效的方法来确定预期收敛时间。随后,通过调节时变函数(TVF)的参数来调整预定义时间。利用神经网络(NN)逼近技术,通过预定义时间一致性控制来解决未知非线性动态问题。李雅普诺夫稳定性理论证明预定义时间跟踪误差信号是有界且收敛的。仿真结果验证了所提出的预定义时间一致性控制方案的可行性和有效性。