Suppr超能文献

基于神经网络的一类非线性多智能体时滞系统的自适应领导者-跟随者共识控制。

Neural Network-Based Adaptive Leader-Following Consensus Control for a Class of Nonlinear Multiagent State-Delay Systems.

出版信息

IEEE Trans Cybern. 2017 Aug;47(8):2151-2160. doi: 10.1109/TCYB.2016.2608499. Epub 2016 Oct 11.

Abstract

Compared with the existing neural network (NN) or fuzzy logic system (FLS) based adaptive consensus methods, the proposed approach can greatly alleviate the computation burden because it needs only to update a few adaptive parameters online. In the multiagent agreement control, the system uncertainties derive from the unknown nonlinear dynamics are counteracted by employing the adaptive NNs; the state delays are compensated by designing a Lyapunov-Krasovskii functional. Finally, based on Lyapunov stability theory, it is demonstrated that the proposed consensus scheme can steer a multiagent system synchronizing to the predefined reference signals. Two simulation examples, a numerical multiagent system and a practical multimanipulator system, are carried out to further verify and testify the effectiveness of the proposed agreement approach.

摘要

与现有的基于神经网络(NN)或模糊逻辑系统(FLS)的自适应共识方法相比,所提出的方法可以大大减轻计算负担,因为它只需要在线更新几个自适应参数。在多智能体一致性控制中,系统不确定性源于未知的非线性动力学,通过采用自适应神经网络来抵消;通过设计李雅普诺夫-克拉索夫斯基函数来补偿状态延迟。最后,基于李雅普诺夫稳定性理论,证明了所提出的共识方案可以使多智能体系统同步到预定义的参考信号。通过两个仿真示例,即一个数值多智能体系统和一个实际的多操作器系统,进一步验证和证明了所提出的协议方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验