Suppr超能文献

CuS 纳米晶修饰的 Cu 纳米片上电化学 CO 到乙醇的转化催化作用的深入研究。

Insight into the Electrochemical CO-to-Ethanol Conversion Catalyzed by CuS Nanocrystal-Decorated Cu Nanosheets.

机构信息

State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

出版信息

ACS Appl Mater Interfaces. 2023 Apr 19;15(15):18857-18866. doi: 10.1021/acsami.3c00032. Epub 2023 Apr 6.

Abstract

Ethanol (CHOH) is an economically ideal C product in electrochemical CO reduction. However, the CO-to-CHOH conversion yield has been rather low and the underlying catalytic mechanism remains vague or unexplored in most cases. Herein, by decorating small CuS nanocrystals uniform ly on Cu nanosheets, three desirable features are integrated into the electrocatalyst, including a relatively high positive local charge on Cu (Cu), abundant interfaces between Cu and zero-valence Cu, and a non-flat, stepped catalyst surface, leading to the promoted affinity of *CO, decreased *COCO formation barrier, and thermodynamically preferred *CHCHO-to-*CHCHO conversion. As a result, a high partial current density of ∼20.7 mA cm and a Faraday efficiency of 46% for CHOH are delivered at -1.2 V vs reversible hydrogen electrode in an H-cell containing a 0.1 M KHCO solution. This work proposes an efficient strategy for the high-yield CO-to-CHOH conversion, emphasizing the promise for the industrial production of alcohol and related products from CO.

摘要

乙醇(CHOH)是电化学 CO 还原中一种经济理想的 C 产物。然而,在大多数情况下,CO 到 CHOH 的转化产率相当低,并且潜在的催化机制仍然模糊或未被探索。在此,通过将 CuS 纳米晶体均匀地修饰在 Cu 纳米片上,将三种理想的特性集成到电催化剂中,包括 Cu 上相对较高的正局部电荷(Cu)、Cu 和零价 Cu 之间丰富的界面以及非平坦、阶梯状的催化剂表面,从而促进CO 的亲和力,降低COCO 形成势垒,以及热力学上有利于CHCHO 到CHCHO 的转化。结果,在含有 0.1 M KHCO 的 H 电池中,在-1.2 V 相对于可逆氢电极下,实现了约 20.7 mA cm 的高部分电流密度和 46%的 CHOH 法拉第效率。这项工作提出了一种高效的高产率 CO 到 CHOH 转化的策略,强调了从 CO 工业生产酒精和相关产品的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验