School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, People's Republic of China.
School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand.
ACS Nano. 2023 Jul 11;17(13):12884-12894. doi: 10.1021/acsnano.3c04951. Epub 2023 Jun 20.
Surface and interface engineering, especially the creation of abundant Cu/Cu interfaces and nanograin boundaries, is known to facilitate C production during electrochemical CO reductions over copper-based catalysts. However, precisely controlling the favorable nanograin boundaries with surface structures (e.g., Cu(100) facets and Cu[(100)×(110)] step sites) and simultaneously stabilizing Cu/Cu interfaces is challenging, since Cu species are highly susceptible to be reduced into bulk metallic Cu at high current densities. Thus, an in-depth understanding of the structure evolution of the Cu-based catalysts under realistic CORR conditions is imperative, including the formation and stabilization of nanograin boundaries and Cu/Cu interfaces. Herein we demonstrate that the well-controlled thermal reduction of CuO nanocubes under a CO atmosphere yields a remarkably stable CuO-Cu nanocube hybrid catalyst (CuO(CO)) possessing a high density of Cu/Cu interfaces, abundant nanograin boundaries with Cu(100) facets, and Cu[(100)×(110)] step sites. The CuO(CO) electrocatalyst delivered a high C Faradaic efficiency of 77.4% (56.6% for ethylene) during the CORR under an industrial current density of 500 mA/cm. Spectroscopic characterizations and morphological evolution studies, together with time-resolved attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) studies, established that the morphology and Cu/Cu interfacial sites in the as-prepared CuO(CO) catalyst were preserved under high polarization and high current densities due to the nanograin-boundary-abundant structure. Furthermore, the abundant Cu/Cu interfacial sites on the CuO(CO) catalyst acted to increase the *CO adsorption density, thereby increasing the opportunity for C-C coupling reactions, leading to a high C selectivity.
表面和界面工程,特别是通过在铜基催化剂上电化学 CO 还原过程中创造丰富的 Cu/Cu 界面和纳米晶界,有利于 C 的生成。然而,精确控制具有表面结构(例如,Cu(100)晶面和 Cu[(100)×(110)]台阶位)的有利纳米晶界以及同时稳定 Cu/Cu 界面是具有挑战性的,因为在高电流密度下,Cu 物种极易被还原为体相金属 Cu。因此,深入了解实际 CORR 条件下铜基催化剂的结构演变是至关重要的,包括纳米晶界和 Cu/Cu 界面的形成和稳定。在此,我们证明了在 CO 气氛下对 CuO 纳米立方体的可控热还原生成了具有高密度 Cu/Cu 界面、丰富的具有 Cu(100)晶面的纳米晶界和 Cu[(100)×(110)]台阶位的高度稳定的 CuO-Cu 纳米立方体混合催化剂(CuO(CO))。在工业电流密度为 500 mA/cm 下进行 CORR 时,CuO(CO)电催化剂的 C 法拉第效率高达 77.4%(56.6%为乙烯)。光谱特性和形态演变研究以及时间分辨衰减全反射-表面增强红外吸收光谱(ATR-SEIRAS)研究表明,由于纳米晶界丰富的结构,在高极化和高电流密度下,所制备的 CuO(CO)催化剂中的形貌和 Cu/Cu 界面位得以保留。此外,CuO(CO)催化剂上丰富的 Cu/Cu 界面位增加了*CO 的吸附密度,从而增加了 C-C 偶联反应的机会,导致高 C 选择性。