Ghosh Srabanti, Bera Susmita, Sardar Samim, Pal Sourabh, Camargo Franco V A, D'Andrea Cosimo, Cerullo Giulio
Energy Materials & Devices Division, CSIR - Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032, India.
Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
ACS Appl Mater Interfaces. 2023 Apr 19;15(15):18867-18877. doi: 10.1021/acsami.3c00090. Epub 2023 Apr 6.
Photocatalytic hydrogen generation from water splitting is regarded as a sustainable technology capable of producing green solar fuels. However, the low charge separation efficiencies and the requirement of lowering redox potentials are unresolved challenges. Herein, a multiphase copper-cuprous oxide/polypyrrole (PPy) heterostructure has been designed to identify the role of multiple oxidation states of metal oxides in water reduction and oxidation. The presence of a mixed phase in PPy heterostructures enabled an exceptionally high photocatalytic H generation rate of 41 mmol h with an apparent quantum efficiency of 7.2% under visible light irradiation, which is a 7-fold augmentation in contrast to the pure polymer. Interestingly, the copper-cuprous oxide/PPy heterostructures exhibited higher charge carrier density, low resistivity, and 6 times higher photocurrent density compared to CuO/PPy. Formation of a p-p-n junction between polymer and mixed-phase metal oxide interfaces induce a built-in electric field which influences directional charge transfer that improves the catalytic activity. Notably, photoexcited charge separation and transfer have been significantly improved between copper-cuprous oxide nanocubes and PPy nanofibers, as revealed by femtosecond transient absorption spectroscopy. Additionally, the photocatalyst demonstrates excellent stability without loss of catalytic activity during cycling tests. The present study highlights a superior strategy to boost photocatalytic redox reactions using a mixed-phase metal oxide in the heterostructure to achieve enhanced light absorption, longer charge carrier lifetimes, and highly efficient photocatalytic H and O generation.
通过光催化水分解制氢被视为一种能够生产绿色太阳能燃料的可持续技术。然而,电荷分离效率低以及降低氧化还原电位的要求仍是尚未解决的挑战。在此,设计了一种多相铜 - 氧化亚铜/聚吡咯(PPy)异质结构,以确定金属氧化物的多种氧化态在水还原和氧化中的作用。PPy异质结构中混合相的存在使得在可见光照射下具有41 mmol h的极高光催化产氢速率,表观量子效率为7.2%,与纯聚合物相比提高了7倍。有趣的是,与CuO/PPy相比,铜 - 氧化亚铜/PPy异质结构表现出更高的电荷载流子密度、更低的电阻率和高6倍的光电流密度。聚合物与混合相金属氧化物界面之间形成的p - p - n结会诱导一个内建电场,该电场影响定向电荷转移,从而提高催化活性。值得注意的是,飞秒瞬态吸收光谱表明,铜 - 氧化亚铜纳米立方体和PPy纳米纤维之间的光激发电荷分离和转移得到了显著改善。此外,该光催化剂在循环测试中表现出优异的稳定性,催化活性没有损失。本研究突出了一种卓越的策略,即利用异质结构中的混合相金属氧化物来促进光催化氧化还原反应,以实现增强的光吸收、更长的电荷载流子寿命以及高效的光催化产氢和产氧。