Hong Mi Jin, Kim Min Seong, Lee Su Bo, Kim Seon Kyeong, Kim Yeong Jae, Lee Gil Ju
School of Electrical and Electronics Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
Ceramic Total Solution Center, Korea Institute of Ceramic Engineering and Technology, 3321, Gyeongchung-daero, Sindun-myeon, Icheon-si, Gyeonggi-do 17303, Republic of Korea.
ACS Appl Mater Interfaces. 2024 Oct 30;16(43):58556-58565. doi: 10.1021/acsami.4c10601. Epub 2024 Oct 15.
In recent years, photoelectrochemical (PEC) hydrogen generation through water splitting has gained significant attention as a carbon-free solar-to-energy conversion strategy. Among various materials, copper oxides, specifically cupric oxide (CuO) and cuprous oxide (CuO), have been extensively investigated for their suitable band positions and prominent performance, particularly in heterostructures. However, previously reported heterostructures, such as CuO layers on CuO, are not ideal configurations in terms of photoelectrical properties. In this study, we introduce the fabrication approach for an ideal heterostructure consisting of CuO nanowires on a CuO/CuO mixed-phase film, fabricated by a straightforward electrochemical/thermal method. The CuO nanowire with Cr layer (CNwC) shows potential for solar energy harvesting due to its suitable band positions and narrow bandgap, enabling enhanced photoabsorption across the entire visible spectrum. A thin chromium (Cr) layer underlying the nanostructure contributes to the formation of the ideal copper oxide heterostructure, acting as an adhesive and protective layer. The Cr layer is oxidized during the fabrication process of the CNwC and supports the hydrogen evolution reaction for water splitting. Moreover, the anodization time critically influences the phase composition, size, and density of the nanowires. Under optimal conditions, collective and slanted CuO nanowires can absorb incident light, maximizing both photon absorption and photon-to-energy conversion efficiency.
近年来,通过水分解进行光电化学(PEC)制氢作为一种无碳的太阳能到能源的转换策略受到了广泛关注。在各种材料中,氧化铜,特别是氧化亚铜(Cu₂O)和氧化铜(CuO),因其合适的能带位置和卓越的性能,尤其是在异质结构中的性能,而受到了广泛研究。然而,先前报道的异质结构,如Cu₂O上的CuO层,在光电性能方面并非理想的结构。在本研究中,我们介绍了一种由CuO/Cu₂O混合相薄膜上的CuO纳米线组成的理想异质结构的制备方法,该方法通过简单的电化学/热方法制备。具有Cr层的CuO纳米线(CNwC)因其合适的能带位置和窄带隙而显示出太阳能收集的潜力,能够增强整个可见光谱范围内的光吸收。纳米结构下方的薄铬(Cr)层有助于形成理想的氧化铜异质结构,起到粘合剂和保护层的作用。Cr层在CNwC的制备过程中被氧化,并支持水分解的析氢反应。此外,阳极氧化时间对纳米线的相组成、尺寸和密度有至关重要的影响。在最佳条件下,聚集且倾斜的CuO纳米线可以吸收入射光,使光子吸收和光子到能量的转换效率最大化。