Suppr超能文献

基于铁配合物的超分子框架催化剂用于可见光驱动的CO还原

Iron-Complex-Based Supramolecular Framework Catalyst for Visible-Light-Driven CO Reduction.

作者信息

Kosugi Kento, Akatsuka Chiharu, Iwami Hikaru, Kondo Mio, Masaoka Shigeyuki

机构信息

Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.

出版信息

J Am Chem Soc. 2023 May 17;145(19):10451-10457. doi: 10.1021/jacs.3c00783. Epub 2023 Apr 6.

Abstract

Molecule-based heterogeneous photocatalysts without noble metals are one of the most attractive systems for visible-light-driven CO reduction. However, reports on this class of photocatalysts are still limited, and their activities are quite low compared to those containing noble metals. Herein, we report an iron-complex-based heterogeneous photocatalyst for CO reduction with high activity. The key to our success is the use of a supramolecular framework composed of iron porphyrin complexes bearing pyrene moieties at positions. The catalyst exhibited high activity for CO reduction under visible-light irradiation (29100 μmol g h for CO production, selectivity 99.9%), which is the highest among relevant systems. The performance of this catalyst is also excellent in terms of apparent quantum yield for CO production (0.298% at 400 nm) and stability (up to 96 h). This study provides a facile strategy to create a highly active, selective, and stable photocatalyst for CO reduction without utilizing noble metals.

摘要

不含贵金属的基于分子的多相光催化剂是可见光驱动CO还原最具吸引力的体系之一。然而,关于这类光催化剂的报道仍然有限,与含贵金属的光催化剂相比,它们的活性相当低。在此,我们报道了一种用于CO还原的具有高活性的基于铁配合物的多相光催化剂。我们成功的关键是使用了一种超分子框架,该框架由在特定位置带有芘基的铁卟啉配合物组成。该催化剂在可见光照射下对CO还原表现出高活性(CO生成量为29100 μmol g⁻¹ h⁻¹,选择性99.9%),这在相关体系中是最高的。该催化剂在CO生成的表观量子产率(400 nm处为0.298%)和稳定性(长达96小时)方面也表现出色。这项研究提供了一种简便的策略,无需使用贵金属即可制备出用于CO还原的高活性、选择性和稳定性的光催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验