McQueen Ewan, Sakakibara Noritaka, Kamogawa Kei, Zwijnenburg Martijn A, Tamaki Yusuke, Ishitani Osamu, Sprick Reiner Sebastian
Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building, 295 Cathedral Street Glasgow G1 1XL UK
Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro Tokyo 152-8550 Japan
Chem Sci. 2024 Oct 7;15(43):18146-60. doi: 10.1039/d4sc05289g.
Photocatalysts can use visible light to convert CO into useful products. However, to date photocatalysts for CO conversion are limited by insufficient long-term stability and low CO conversion rates. Here we report hybrid photocatalysts consisting of conjugated polymers and a ruthenium(ii)-ruthenium(ii) supramolecular photocatalyst which overcome these challenges. The use of conjugated polymers allows for easy fine-tuning of structural and optoelectronic properties through the choice of monomers, and after loading with silver nanoparticles and the ruthenium-based binuclear metal complex, the resulting hybrid systems displayed remarkably enhanced activity for visible light-driven CO conversion to formate. In particular, the hybrid photocatalyst system based on poly(dibenzo[,]thiophene sulfone) drove the very active, durable and selective photocatalytic CO conversion to formate under visible light irradiation. The turnover number was found to be very high (TON = 349 000) with a similarly high turnover frequency (TOF) of 6.5 s, exceeding the CO fixation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase in natural photosynthesis (TOF = 3.3 s), and an apparent quantum yield of 11.2% at 440 nm. Remarkably, quantitative conversion of CO (737 μmol, 16.5 mL) to formate was achieved using only 8 mg of the hybrid photocatalyst containing 80 nmol of the supramolecular photocatalyst at standard temperature and pressure. The system sustained photocatalytic activity even after further replenishment of CO, yielding a very high concentration of formate in the reaction solution up to 0.40 M without significant photocatalyst degradation within the timeframe studied. A range of experiments together with density functional theory calculations allowed us to understand the activity in more detail.
光催化剂可以利用可见光将一氧化碳转化为有用的产物。然而,迄今为止,用于一氧化碳转化的光催化剂受到长期稳定性不足和一氧化碳转化率低的限制。在此,我们报道了由共轭聚合物和钌(II)-钌(II)超分子光催化剂组成的混合光催化剂,其克服了这些挑战。共轭聚合物的使用使得通过选择单体能够轻松地对结构和光电性能进行微调,并且在负载银纳米颗粒和基于钌的双核金属配合物后,所得的混合体系对可见光驱动的一氧化碳转化为甲酸盐表现出显著增强的活性。特别是,基于聚(二苯并[,]噻吩砜)的混合光催化剂体系在可见光照射下驱动了非常活跃、持久且选择性的光催化一氧化碳转化为甲酸盐。发现周转数非常高(TON = 349000),周转频率(TOF)同样高达6.5 s,超过了天然光合作用中核酮糖-1,5-二磷酸羧化酶/加氧酶的一氧化碳固定活性(TOF = 3.3 s),并且在440 nm处的表观量子产率为11.2%。值得注意的是,在标准温度和压力下,仅使用8 mg含有80 nmol超分子光催化剂的混合光催化剂就实现了737 μmol(16.5 mL)一氧化碳向甲酸盐的定量转化。即使在进一步补充一氧化碳后,该体系仍保持光催化活性,在研究的时间范围内,反应溶液中甲酸盐的浓度非常高,达到0.40 M,且光催化剂没有明显降解。一系列实验以及密度泛函理论计算使我们能够更详细地了解其活性。