Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Group of Catalysis for Biofuels, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Nat Chem. 2023 May;15(5):705-713. doi: 10.1038/s41557-023-01163-8. Epub 2023 Apr 6.
The conversion of carbon dioxide to value-added products using renewable electricity would potentially help to address current climate concerns. The electrochemical reduction of carbon dioxide to propylene, a critical feedstock, requires multiple C-C coupling steps with the transfer of 18 electrons per propylene molecule, and hence is kinetically sluggish. Here we present the electrosynthesis of propylene from carbon dioxide on copper nanocrystals with a peak geometric current density of -5.5 mA cm. The metallic copper nanocrystals formed from CuCl precursor present preponderant Cu(100) and Cu(111) facets, likely to favour the adsorption of key *C and *C intermediates. Strikingly, the production rate of propylene drops substantially when carbon monoxide is used as the reactant. From the electrochemical reduction of isotope-labelled carbon dioxide mixed with carbon monoxide, we infer that the key step for propylene formation is probably the coupling between adsorbed/molecular carbon dioxide or carboxyl with the *C intermediates that are involved in the ethylene pathway.
利用可再生电力将二氧化碳转化为高附加值产品,可能有助于解决当前的气候问题。电化学还原二氧化碳生成丙烯,这是一种关键的原料,需要经过多个 C-C 偶联步骤,每个丙烯分子转移 18 个电子,因此动力学上较为缓慢。在这里,我们在铜纳米晶体上展示了二氧化碳电合成丙烯的过程,峰值几何电流密度为-5.5 mA cm。由 CuCl 前体制备的金属铜纳米晶体呈现出占优势的 Cu(100)和 Cu(111)晶面,这可能有利于关键的 *C 和 *C 中间体的吸附。引人注目的是,当使用一氧化碳作为反应物时,丙烯的产率会大幅下降。从与一氧化碳混合的同位素标记的二氧化碳的电化学还原中,我们推断出丙烯形成的关键步骤可能是吸附/分子二氧化碳或羧基与参与乙烯途径的 *C 中间体之间的偶联。