Suppr超能文献

调节中间键合能够在铜铟催化剂上实现二氧化碳选择性电还原为一氧化碳。

Tuning intermediate binding enables selective electroreduction of carbon dioxide to carbon monoxide on a copper-indium catalyst.

作者信息

Xu Shengzhou, Wang Chenglong, Ran Chunjing, Yang Hexing, Gao Wangjiang, Dong Bitao, Liu Yuhang, Ren Dan

机构信息

School of Chemical Engineering and Technology, Xi'an Jiaotong University West Xianning Road 28 Xi'an 710049 China

Department of Materials Sciences and Engineering, Angstrom Laboratory, Uppsala University Uppsala SE-75105 Sweden

出版信息

Chem Sci. 2025 Apr 21. doi: 10.1039/d5sc01110h.

Abstract

Electrosynthesis of carbon monoxide (CO) from carbon dioxide (CO) and water driven by renewable electricity represents a sustainable route to carbon upgrading, but the lack of cost-effective catalysts hinders its scaling-up. Here, we judiciously designed a bimetallic Cu-In catalyst electroreduction of In-coated CuO nanowires. This facilely-prepared Cu-In catalyst delivers an excellent performance towards CO production in a flow cell, with a faradaic efficiency of CO of up to 91% at a geometric current density of -69 mA cm. Different from previous studies suggesting that In-modified Cu strengthens the adsorption of *COOH and/or weakens the binding of *H, we discovered that In acts as the active site. The modification of In by Cu weakens the adsorption of *CO. This facilitates a faster desorption of *CO, thus inhibiting the C-C coupling process. As a result, the formation of multi-carbon products is suppressed. This conclusion was drawn through a rigorous analysis of the electrochemical reduction of CO, the electrochemical adsorption of *CO and Raman spectroscopy. Finally, we wired our CuIn-based electrolyzer to an efficient triple-junction solar cell for the demonstration of solar-driven CO conversion and achieved a solar-to-chemical energy conversion efficiency of greater than 10% for CO.

摘要

利用可再生电力驱动二氧化碳(CO₂)和水进行电合成一氧化碳(CO)是实现碳升级的可持续途径,但缺乏具有成本效益的催化剂阻碍了其规模化发展。在此,我们精心设计了一种双金属铜 - 铟催化剂——包覆铟的氧化铜纳米线的电还原产物。这种制备简便的铜 - 铟催化剂在流动池中对CO生成表现出优异性能,在几何电流密度为 -69 mA cm⁻²时,CO的法拉第效率高达91%。与之前研究表明铟修饰的铜会增强COOH的吸附和/或减弱H的结合不同,我们发现铟是活性位点。铜对铟的修饰减弱了CO的吸附。这有利于CO更快地脱附,从而抑制了C - C偶联过程。结果,多碳产物的形成受到抑制。这一结论是通过对CO的电化学还原、*CO的电化学吸附以及拉曼光谱的严格分析得出的。最后,我们将基于铜铟的电解槽与高效的三结太阳能电池连接,以展示太阳能驱动的CO转化,并实现了CO的太阳能到化学能转化效率大于10%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aab4/12093485/b14d842d2da9/d5sc01110h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验