Ma Haibin, Ibáñez-Alé Enric, You Futian, López Núria, Yeo Boon Siang
Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain.
J Am Chem Soc. 2024 Nov 6;146(44):30183-30193. doi: 10.1021/jacs.4c08755. Epub 2024 Oct 29.
During the electrochemical CO reduction reaction (eCORR) on copper catalysts, linear-bonded CO (*CO) is commonly regarded as the key intermediate for the CO-CO coupling step, which leads to the formation of multicarbon products. In this work, we unveil the significant role of bridge-bonded *CO (*CO) as an active species. By combining Raman spectroscopy, gas and liquid chromatography, and density functional theory (DFT) simulations, we show that adsorbed *OH domains displace *CO to *CO. The electroreduction of a CO+CO cofeed demonstrates that *CO distinctly favors the production of acetate and 1-propanol, while *CO favors ethylene and ethanol formation. This work enhances our understanding of the mechanistic intricacies of eCORR and suggests new directions for designing operational conditions by modifying the competitive adsorption of surface species, thereby steering the reaction toward specific multicarbon products.
在铜催化剂上的电化学CO还原反应(eCORR)过程中,线性键合的CO(CO)通常被视为CO-CO偶联步骤的关键中间体,该步骤会导致多碳产物的形成。在这项工作中,我们揭示了桥式键合的CO(CO)作为活性物种的重要作用。通过结合拉曼光谱、气相和液相色谱以及密度泛函理论(DFT)模拟,我们表明吸附的OH域将CO取代为CO。CO+CO共进料的电还原表明,CO明显有利于乙酸盐和1-丙醇的生成,而CO有利于乙烯和乙醇的形成。这项工作加深了我们对eCORR机理复杂性的理解,并为通过改变表面物种的竞争吸附来设计操作条件提供了新方向,从而使反应朝着特定的多碳产物进行。