Lin Shuoshu, Wang Dan, Sang Haojun, Xiao Hongjun, Yan Kecheng, Wang Dongyang, Zhang Yizheng, Yi Li, Shao Guangjian, Shao Zhiyong, Yang Aoran, Zhang Lei, Sun Jinyan
Foshan University, School of Mechatronic Engineering and Automation, Foshan, China.
Beijing Rehabilitation Hospital of Capital Medical University, Department of Traditional Chinese Medicine, Beijing, China.
Neurophotonics. 2023 Apr;10(2):025001. doi: 10.1117/1.NPh.10.2.025001. Epub 2023 Apr 4.
Motor function evaluation is essential for poststroke dyskinesia rehabilitation. Neuroimaging techniques combined with machine learning help decode a patient's functional status. However, more research is needed to investigate how individual brain function information predicts the dyskinesia degree of stroke patients.
We investigated stroke patients' motor network reorganization and proposed a machine learning-based method to predict the patients' motor dysfunction.
Near-infrared spectroscopy (NIRS) was used to measure hemodynamic signals of the motor cortex in the resting state (RS) from 11 healthy subjects and 31 stroke patients, 15 with mild dyskinesia (Mild), and 16 with moderate-to-severe dyskinesia (MtS). The graph theory was used to analyze the motor network characteristics.
The small-world properties of the motor network were significantly different between groups: (1) clustering coefficient, local efficiency, and transitivity: MtS > Mild > Healthy and (2) global efficiency: MtS < Mild < Healthy. These four properties linearly correlated with patients' Fugl-Meyer Assessment scores. Using the small-world properties as features, we constructed support vector machine (SVM) models that classified the three groups of subjects with an accuracy of 85.7%.
Our results show that NIRS, RS functional connectivity, and SVM together constitute an effective method for assessing the poststroke dyskinesia degree at the individual level.
运动功能评估对于中风后运动障碍的康复至关重要。神经影像学技术与机器学习相结合有助于解读患者的功能状态。然而,仍需要更多研究来探讨个体脑功能信息如何预测中风患者的运动障碍程度。
我们研究了中风患者的运动网络重组情况,并提出了一种基于机器学习的方法来预测患者的运动功能障碍。
采用近红外光谱(NIRS)测量11名健康受试者和31名中风患者静息状态(RS)下运动皮层的血流动力学信号,其中15名患有轻度运动障碍(轻度),16名患有中度至重度运动障碍(中重度)。运用图论分析运动网络特征。
运动网络的小世界特性在各组之间存在显著差异:(1)聚类系数、局部效率和传递性:中重度>轻度>健康组;(2)全局效率:中重度<轻度<健康组。这四个特性与患者的Fugl-Meyer评估得分呈线性相关。以小世界特性为特征,我们构建了支持向量机(SVM)模型,对三组受试者进行分类,准确率达85.7%。
我们的结果表明,NIRS、RS功能连接性和SVM共同构成了一种在个体水平上评估中风后运动障碍程度的有效方法。