Deja Marek, Widén Gunilla, Ahmad Farhan
Jagiellonian University, ul. prof. Stanisława Łojasiewicza 4, 30-348, Kraków, Poland.
Uppsala University, Engelska parken, Thunbergsvägen 3H, 752 38, Uppsala, Sweden.
Heliyon. 2023 Mar 21;9(4):e14689. doi: 10.1016/j.heliyon.2023.e14689. eCollection 2023 Apr.
The paper aims to state the research protocol for the innovation-seeking behavior of Small- to Medium-sized Enterprises (SMEs), related to the classification of knowledge needs expressed in the networking databases. The dataset of 9301 networking offers as the outcome of proactive attitudes represents the content of the Enterprise Europe Network (EEN) database. The data set has been semi-automatically obtained using the rvest R package, and then analyzed using static word embedding neural network architecture: Continuous Bag-of-Words CBoW, predictive model Skip-Gram, and Global Vectors for Word Representation (GloVe) considered the state-of-the-art models, to create topic-specific lexicons. The proportion of offers labeled as Exploitative innovation to Explorative innovation is balanced with a 51%-49% proportion. The prediction rates show good performance with an AUC score of 0.887, and the prediction rates for exploratory innovation 0.878 and explorative innovation 0.857. The performance of predictions with the frequency-inverse document frequency (TF-IDF) technique shows that the research protocol is sufficient to categorize the innovation-seeking behavior of SMEs using static word embedding based on the description of knowledge needs and text classification, but it is not perfect due to the general entropy related to the outcome of networking. In the context of networking, SMEs place a greater emphasis on explorative innovation in their innovation-seeking behavior. They prioritize smart technologies and global business cooperation, whereas current information technologies and software are more of interest to SMEs that adopt an exploitative innovation approach.
本文旨在阐述中小企业(SMEs)寻求创新行为的研究方案,该方案与网络数据库中表达的知识需求分类相关。作为积极态度成果的9301个网络报价数据集代表了企业欧洲网络(EEN)数据库的内容。该数据集使用rvest R包半自动获取,然后使用静态词嵌入神经网络架构进行分析:连续词袋模型(CBoW)、预测模型Skip-Gram以及词向量表示全局向量模型(GloVe),这些被视为最先进的模型,用于创建特定主题的词汇表。标记为开发性创新与探索性创新的报价比例达到了51%-49%的平衡。预测率表现良好,AUC得分为0.887,其中探索性创新的预测率为0.878,开发性创新的预测率为0.857。使用词频逆文档频率(TF-IDF)技术的预测性能表明,该研究方案足以根据知识需求描述和文本分类,利用静态词嵌入对中小企业的寻求创新行为进行分类,但由于与网络结果相关的一般熵,该方案并不完美。在网络环境中,中小企业在寻求创新行为时更加强调探索性创新。他们优先考虑智能技术和全球商业合作,而采用开发性创新方法的中小企业对当前信息技术和软件更感兴趣。