Suppr超能文献

机器学习技术与老年人对在线信息和错误信息的处理:一项关于新冠疫情的研究。

Machine learning techniques and older adults processing of online information and misinformation: A covid 19 study.

作者信息

Choudrie Jyoti, Banerjee Snehasish, Kotecha Ketan, Walambe Rahee, Karende Hema, Ameta Juhi

机构信息

University of Hertfordshire, Hertfordshire Business School, DeHavilland Campus, Hatfield. Herts, AL109EU, UK.

York Management School, University of York, Freboys Lane, YO10 5GD, UK.

出版信息

Comput Human Behav. 2021 Jun;119:106716. doi: 10.1016/j.chb.2021.106716. Epub 2021 Jan 30.

Abstract

This study is informed by two research gaps. One, Artificial Intelligence's (AI's) Machine Learning (ML) techniques have the potential to help separate information and misinformation, but this capability has yet to be empirically verified in the context of COVID-19. Two, while older adults can be particularly susceptible to the virus as well as its online infodemic, their information processing behaviour amid the pandemic has not been understood. Therefore, this study explores and understands how ML techniques (Study 1), and humans, particularly older adults (Study 2), process the online infodemic regarding COVID-19 prevention and cure. Study 1 employed ML techniques to classify information and misinformation. They achieved a classification accuracy of 86.7% with the Decision Tree classifier, and 86.67% with the Convolutional Neural Network model. Study 2 then investigated older adults' information processing behaviour during the COVID-19 infodemic period using some of the posts from Study 1. Twenty older adults were interviewed. They were found to be more willing to trust traditional media rather than new media. They were often left confused about the veracity of online content related to COVID-19 prevention and cure. Overall, the paper breaks new ground by highlighting how humans' information processing differs from how algorithms operate. It offers fresh insights into how during a pandemic, older adults-a vulnerable demographic segment-interact with online information and misinformation. On the methodological front, the paper represents an intersection of two very disparate paradigms-ML techniques and interview data analyzed using thematic analysis and concepts drawn from grounded theory to enrich the scholarly understanding of human interaction with cutting-edge technologies.

摘要

本研究基于两个研究空白。其一,人工智能(AI)的机器学习(ML)技术有潜力帮助区分信息与错误信息,但这种能力在新冠疫情背景下尚未得到实证验证。其二,虽然老年人可能特别容易感染病毒及其引发的网络信息疫情,但他们在疫情期间的信息处理行为尚不清楚。因此,本研究探讨并理解机器学习技术(研究1)以及人类,特别是老年人(研究2)如何处理关于新冠疫情预防和治疗的网络信息疫情。研究1运用机器学习技术对信息和错误信息进行分类。使用决策树分类器时,分类准确率达到86.7%,使用卷积神经网络模型时,分类准确率达到86.67%。然后,研究2利用研究1中的一些帖子,调查了老年人在新冠信息疫情期间的信息处理行为。采访了20位老年人。结果发现,他们更愿意信任传统媒体而非新媒体。他们常常对与新冠疫情预防和治疗相关的网络内容的真实性感到困惑。总体而言,本文通过突出人类信息处理与算法操作方式的不同,开辟了新的领域。它为疫情期间老年人这一弱势群体如何与网络信息和错误信息互动提供了新的见解。在方法论方面,本文代表了两种截然不同的范式的交叉——机器学习技术以及使用主题分析和扎根理论中的概念对访谈数据进行分析,以丰富对人类与前沿技术互动的学术理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4208/8631531/465d8a754686/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验